
Decomposition and Interfaces Revisited
Andreas Rau

Systems Engineer
STZ Softwaretechnik

73730 Esslingen, Germany
email: andreas.rau@stz-softwaretechnik.de

ABSTRACT
Abstraction and hierarchical decomposition are key princi-
ples for mastering complexity in science and engineering.
In Software Engineering, the interfaces that result from the
application of those principles play a crucial role, particu-
larly when building large and complex systems. This article
revisits general principles behind abstraction and decompo-
sition and presents a collection of fundamental principles
and design goals to guide the modularization of a system
and the definition of interfaces.

Abstraction, decomposition, interfaces

1. Introduction

Abstraction is one of the fundamental principles in science
and engineering. In a complex world such as ours, only the
removal of irrelevant details clears the view for understand-
ing of the various problems and tasks we are faced with,
which is a prerequisite for solving or mastering them - one
at a time. Since the solving of problems and the mastering
(automation) of tasks is the main application of computers
and software, abstraction is an indispensable tool also for
software engineering. It is the principle of abstraction that
enables us to ”divide and conquer” the problems that can
be solved by means of computers and software. Follow-
ing this principle, every complex problem or task is bro-
ken down into simpler problems or steps that can solved
by an algorithm. This is reflected by the modular structure
of software. Modules serve many important purposes in a
software development process. A module

• is a self-contained unit of work that can be assigned to
a developer for more or less independent and parallel
implementation.

• is a countable part of the solution. The status of all
modules constitutes the status of the project and can
be used for tracking progress.

• is a unit for test and integration. Step-by-step unit test-
ing and integration is required to achieve adequate test
depth and minimize test effort.

• is a (potential) candidate for reuse.

However, any given module will not automatically
fullfill all the above purposes. This might not matter for
simple systems and in small projects, however for complex
systems and large systems, their ignorance can be lethal.
This is because such projects

• require sharing the work between many people, and
it is essential for them to be largely independent of
each other. Otherwise the overhead for communica-
tion can explode to the point where it effectively halts
the project.

• involve many, many modules. When those modules
are not independent and changes in one module keep
affecting others, the project is going in circles, noth-
ing ever gets finished and tracking progress becomes
nearly impossible.

• include major effort for testing and the definition and
management of test-cases. If modules can only be
tested with enourmous effort or not at all, or if they
keep changing (and thus require changing of their test
cases and test beds), this effort will explode and the
project either will not meet its deadlines or will de-
liver poor quality.

• are typically not developed in a linear fashion, but in
iterations, i.e. through incremental changes. The re-
sulting product has to be maintained over a long life-
time. Because of its complexity and the amount of
effort it required to build, it cannot simply be re-build
if requirements change. However, changes of require-
ments are very likely, even during development. If the
effects of these changes ripple throughout the whole
system, incremental development and maintainance
are not safely and economically possible.

• are based on powerful and complex concepts and tech-
nologies that are too expensive to re-implement and
re-test every time. It is far more reasonable and eco-
nomical to re-use a time-tested component from a li-
brary or a third-party vendor.1

Therefore, modules and their interfaces have to be de-
signed carefully. As in other areas of life, some extra effort

1Upon a closer look, even everyday software like web-browsers in-
cludes a mix of components (e.g. pluggins) from different vendors.



early can save a lot of headaches later. A variety of princi-
ples and methods have been established to help to decom-
pose a given system into ”good” modules. We shall discuss
shortly what ”good” means in this context. Unfortunately
some of the corresponding terminology can easily be con-
fused with abstraction itself (see [Ber] for a discussion). In-
terfaces play a crucial role in this decomposition and thus
deserve our special attention.

The following section discusses the importance of in-
terfaces in the decomposition process and presents a collec-
tion of principles and goals from various sources to aid their
proper definition. Note: the common notion of a module
typically involves a collection of functions with the mod-
ule interface being the collection of their signatures. For
the discussion of interfaces, the terms module and function
are used interchangeably to reference products of decom-
position with different sizes.

2. Interfaces

Interfaces are created whenever something is decomposed
into parts, and they have a substantial impact on the devel-
opment process and the final product:

• From a systems point of view, they are the glue for
putting modules together, and - as in real-life - if the
glue is bad, the system will break.

• From a process point of view, interfaces are both the
means to isolate developers, so they can work inde-
pendently, and an agreement on how to integrate their
finished products into a whole.

• From a developer’s perspective, an interface is all that
is visible of an abstracted functionality. That is, for
somebody looking at a black-box component from
outside, the interface “is” the component.

The characteristics of an interface mainly depend on
where a decomposition is made. If the point is well-chosen,
complexity is indeed reduced as intended, whereas if it is
ill-chosen, complexity might even increase. So the ques-
tion that generations of researchers have tried to answer is
“what is the optimal strategy for decomposition?”. Unfor-
tunately, none of them has come up with a definitive and
formal answer so far (for a discussion, see [MP86]). So
when it comes to finding the right place to cut, we must
still rely on a number of basic principles, collective experi-
ence, rules of thumb and common sense.

2.1 Interface Requirements

Following is a list of basic principles and criteria for the
functionality to capture within a module and its interface.

Uniqueness This refers to the principle “Do things once
and only once” which is especially popular in the
object-oriented community. The idea is to break down
a problem into a set of small2 functions each perform-
ing only one simple task (e.g. find an item in a list)
or encapsulating a single design decision (e.g. how to
store a list of items). Such functions can be indepen-
dently and easily understood, implemented and tested
and may be combined (reused) in many ways to imple-
ment functions of increasing complexity. Since every-
thing is “done only once”, it is very easy to maintain,
because changes need be made only in one place.

Completeness The intention here is not to group arbitrary
statements or half-cooked concepts but to encapsulate
something complete that can be named, described and
tested by itself. This can either be a function, step in
a procedure or a design-decision (see [Par72]). Being
able to name an abstraction is actually a good litmus
test for proper decomposition.

Maximum Cohesion and Minimum Coupling The idea
behind this is to maximize cohesion within modules
and minimize coupling (dependencies) between mod-
ules. This can be achieved by putting only related
functions together in a module (see also [Mye75]).
Doing so simplifies understanding, independent de-
velopment and testing of components. It is also a pre-
requisite for interface stability.

Interface Stability Interfaces can be viewed as a con-
tract between independent modules/developers (see
[Mey88, Mey92]). Just like a real contract, interfaces
should stable after being negotiated and designed thor-
oughly. This is because changes will affect other de-
velopers/components and thus contradict the isolating
function of the interface. Note: A good design will
still allow some flexibility for foreseeable future ex-
tensions, so that when they become necessary, the in-
terface need not be changed.

Interface Minimality A module should import and ex-
port only the minimal amount of information neces-
sary to carry out its function. In particular, no extra
data should be carried through a module unchanged.
In short, an interface should convey ”as little data
and information as possible but as much as needed”.
This simplifies understanding of the interface. It also
helps a module not to give away its inner workings
(information-hiding, see [Par72]). For example, if a
function needs only a few parts of a compound (e.g. a
structure) it might be wise only to pass in this infor-
mation individually, in order not to make the function

2screensize is a good rule of thumb



depend on the structure of the compound. On the other
hand, if a function modifies part of a compound, it is
better to pass it in and out as a whole, so that not ev-
ery caller needs to know its structure and re-assign the
changed values (see also Consistency and Documen-
tation below). In addition, also the encapsulated func-
tionality should be minimal to promote reuse, main-
tainability and comprehensibility.

Interface Documentation If somebody wants to use the
functionality encapsulated by the module and visible
through the interface, there must be documentation
suitable both for judging the fitness of the functional-
ity and for properly (re)using it. This includes a sum-
mary of the functionality itself, as well as the num-
ber, name, position, type and semantics of all the ar-
guments and return values in the interface. Further-
more, for compound and pointer arguments, it should
be documented which elements are (only) read from
and which are modified. This might seem like a trivial
requirement, but since nobody likes to write documen-
tation, it is often not adhered to.

Interface Explicity This asks for all values used or cre-
ated by a function to show explicitly in the interface as
arguments or return values. The implicit use of global
variables as inputs or outputs should be restricted as
much as possible. Such a restriction is very similar to
the Law of Demeter [LH89] for object-oriented soft-
ware. It leads to predictable behavior by ruling out
side-effects3 and makes a function more straightfor-
ward to comprehend and use. Furthermore, it simpli-
fies testing by minimizing the effort for testbeds (see
testability below).

Interface Consistency In order not to confuse other de-
velopers and avoid mismatches, interfaces (in a fam-
ily of functions) should be consistent with respect to
the name, position and type of common arguments
and the implementation of common mechanisms such
as error-handling (e.g. by return value or extra argu-
ment). Then, developers can quickly recognize com-
mon elements and concentrate on the differences.

None of the above is really hard-and-fast. Thus, it
should be obvious that the activities in analysis and de-
sign (synthesis) where the decomposition normally takes
place cannot be performed mechanically or fully auto-
mated. They largely remain creative activities.

2.2 Interfaces and Quality

Interfaces also directly affect a number of common qual-
ity attributes, and there are design principles to improve
them. Following is a list of such quality attributes. Where

3Side-effects are a know source of hidden dependencies and hard-to-
find bugs.

a corresponding design principle exists, it is mentioned in
parantheses:

Testability (Design for Test) Testability of the parts of a
complex system is essential, since it cannot be tested
in-depth as a whole: It is simply impossible to pre-
cisely stimulate all the internal interfaces through the
external interface. Therefore, the functionality of ev-
ery part must be tested bottom-up before integration
with other parts. A minimum requirement for the
testability of a part is to be able to specify/document it
by itself and such that test cases can be derived from
this information. Additionally, it should have a mini-
mum number of dependencies to other parts and sim-
ple interfaces, so that it can either be executed by itself
or existing dependencies can be satisfied by a minimal
context and simple stubs and drivers.

Reusability The (re)use of existing parts is important for
successfully implementing a complex new system.
Complex systems are not built from scratch ([Bro95]),
and reuse is not only a matter of efficiency, but also of
reliability: As reflected by the bathtub curve, time-
tested components, i.e. components which are used
either often or for a long time, become more reliable -
the more they are exposed to different inputs, the more
bugs are found and removed. The amount of new bugs
introduced in this process and the resulting degrada-
tion of reliability depends on the maintainability of
the component (see below). In general, by reusing
existing parts instead of repeating old mistakes and
“re-inventing the wheel”, resources are set free for the
design and testing of the new parts and the whole.

One important prerequisite for reusability that is of-
ten neglected is a well-organized library of well-
documented components so that a given functional-
ity can be found and understood when needed. An-
other important aspect is the flexibility of the part it-
self for use in different environments. There is an
important tradeoff between achieving this flexibility
and not ending up with some complicated all-purpose
component that can neither be understood, maintained
or tested. For interfaces, this means that they must be
wide enough so that they can support all reasonable
variations yet narrow enough so that they can still be
understood, precisely specified and tested.

Readability/Understandability Readability refers to the
extent to which a software is understandable, typically
to another person than the original author. But also the
author himself might have difficulties in understand-
ing his own software after, say, a year, if it is not well
structured and documented. Without understanding
what a piece of software is supposed to do and what it
actually does, it is impossible to review it, design test
cases for it, evaluate its test results, pinpoint and fix
bugs in it or safely make changes to it. Thus, readabil-
ity is not only important in its own right but also as a



prerequisite for other goals like testability and main-
tainability. Interfaces, being the entry point to a func-
tion, are also the starting point for understanding it and
limit its (side-)effects by explicitly defining inputs and
outputs and isolating one function from another.

Maintainability/Changeability (Design for Change)
Software is (seemingly) easy to change, and it
will be changed many times, both throughout the
development process (especially an iterative one as in
[Boe88]) and during its lifetime because of changed
requirements or bugs that need to be fixed. As a
matter of fact, there are a lot more programmers
maintaining old software than writing new software.
Therefore, it is cruicial that software is not “write-
only”. As already described in [Wei71], many people
write software, but not nearly as many read any. Nor
is all software equally readable. Maintainability is
very closely related to readability (see above), but it
is not the same: Before changing a piece of software,
the maintainance programmer must understand it
in order to determine what/where to change and
what side-effects the change might have on other
components. That is the readability part. But even the
most understandable software can be hard to change,
if it is ill designed, i.e. when there are too many
dependencies and side-effects that make the impact
of changes unpredictable, when data structures are
not extensible, etc. In this context, interfaces are
particularly important, because they transport the data
and implement or prevent dependencies.

2.3 Kinds of Interfaces

Interfaces can be classified by location or purpose, and each
kind has to be treated differently in the development pro-
cess. The discussion above was centered around internal
interfaces of a system. Here are some more kinds, distin-
guished by location.

External interfaces reflect the context of a system and
isolate its inner workings from it. Being the only
means of interaction between the system and the envi-
ronment, they effectively define and limit its possible
functionality. The context can already be informally
specified very early in development. It is crucial that
it is completed, agreed upon by all (external) stake-
holders and stable before moving on with the decom-
position, because changes at a later time will break
down to and affect internal interfaces.

Internal interfaces are a result of the decomposition of
the system. By isolating individual modules, they fa-
cilitate concurrent development and testing and are the
glue to put the pieces back together during integration.

Portability and maintainability layers can appear both
inside and outside of a system. On the outside, they

are used as wrappers to make a system independent
of particular characteristics of its environment, espe-
cially those that are beyond the control of the sys-
tem/project or that may change (e.g. over time or be-
tween platforms). Inside a system, they are used to
encapsulate design-decisions or generic functions in a
single place. Both on the inside and the outside, their
ultimate goal is to limit the effect of changes.

Another possible distinction of interfaces is by pur-
pose. This includes their generality and potential for reuse:

Specific interfaces are internal interfaces to functions that
do some kind of processing that is particular to a sys-
tem and that cannot be re-used. Hence, they need not
be overly flexible and should be held as simple as pos-
sible. All generic functionality should be factored out
to maintainability layers or frameworks.

Framework interfaces are external interfaces to func-
tions that offer generic services (e.g. for GUIs or
data storage) and can be re-used in different contexts.
Therefore, they must offer additional flexibility for
various situations. They are typically more expensive
to build and only pay for themselves by reuse in the
long run.

Programming Interfaces (APIs) are external interfaces
to generic libraries or frameworks by which the lat-
ter can be used to implement a new programm in the
problem domain given by the framework. Of course,
they can also be used to extend a framework or build
a portability layer on top of it.

Open/Extension interfaces are external interfaces that
can be used to extend the capabilities of a general sys-
tem or tool. Typical examples for this are pluggins,
macros, scripts, filters, ...

Please note, that these different kinds of categories
are not exclusive. A framework interface for example is
typically used as a programming interface. When defining
an interface, one should think about its intention and try not
to address several purposes in one.

3. Conclusion

Paradigms, notations and programming languages change,
but there are certain universal principles that must not be
forgotten, and the importance of interfaces is one such prin-
ciple. Interfaces are one key vessel for achieving the goal
of managing and reducing complexity and avoiding to in-
crease it through complicated rules, architectures, etc., es-
pecially for safety-critical systems. Or as in [Hat98]: “Soft-
ware safety, like safety in other engineering disciplines,
is about the enforced avoidance of known problems, the
avoidance of needless complexity and the adherence to
simple and well-established engineering principles which
are observed to behave safely.”.



References

[Ber] Edward V. Berard. Abstraction, encapsulation and information hiding. Whitepaper,
http://www.itmweb.com/essay550.htm.

[Boe88] Barry W. Boehm. A spiral model of software development and enhancement. IEEE Computer, 21 (5), 1988.

[Bro95] Frederick P. Brooks. The mythical man month: essays on software engineering. Addison Wesley Publishing Com-
pany, Inc., 20th anniversary edition, 1995.

[Hat98] Les Hatton. Safer C: Developing Software for High-Integrity and Safety-Critical Systems. McGraw-Hill International
Series in Software Engineering, 1998.

[LH89] Karl Lieberherr and Ian Holland. Assuring good style for object-oriented programs. IEEE Software, pages 38–48,
September 1989.

[Mey88] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 1988.

[Mey92] Bertrand Meyer. Applying ”design by contract”. IEEE Computer, 25(10):40–51, 1992.

[MP86] Stephen M. McMenamin and John F. Palmer. Essential Systems Analysis. Prentice Hall, 1986.

[Mye75] Glenford J. Myers. Reliable Software Through Composite Design. Van Nostrand Reinhold Company, New York,
1975.

[Par72] D.L. Parnas. On the criteria to be used in decomposing systems into modules. Communications of the ACM,
5(12):1053–1058, December 1972.

[Wei71] G.M. Weinberg. The Psychology of Computer Programming. Van Nostrand Reinhold, New York, 1971.


	Introduction
	Interfaces
	Interface Requirements
	Interfaces and Quality
	Kinds of Interfaces

	Conclusion

