

ActiveLink
An embedded systems solution for

generic cross-platform communication
Bernard M. Venemansa, Michel Chaudrona, and Harro S. Jacobsb
a Eindhoven University of Technology, Department of Computing Science,

P.O. Box 513, 5600 MB Eindhoven, The Netherlands, e-mail: m.r.v.chaudron@tue.nl
b CMG Eindhoven B.V. - Sector Trade, Transport & Industry, Luchthavenweg 57
P.O. Box 7089, 5605 JB Eindhoven, The Netherlands, e-mail: tswe@cmg.nl

Abstract - A trend in automation is the increasing
connectivity of devices and applications in order to provide
new types of functionality. To combine functionality, it is
necessary that devices can communicate with each other.
In recent years, we have seen the emergence of a special
type of software, called middleware, that aims at inter-
application communication.

In this paper we present ActiveLink: a solution for
cross-platform communication between embedded systems.
ActiveLink is lightweight, easily portable, and supports
many communication protocols. ActiveLink has been
developed by CMG, supported with research from the
Eindhoven University of Technology [1].

We discuss ActiveLink in the context of the
requirement for embedded systems and compare its
features to that of mainstream middleware.

Keywords - middleware; cross-platform communication;
embedded software; portability.

I. INTRODUCTION

As more and more devices are being embedded with
software, it becomes possible to connect these devices to
combine their functionality. This is already happening in
some domains, such as consumer electronics, and is very
likely to become more common in the near future.
Communication between devices allows these systems to
use each other's features. In this way, devices can
specialize in their most important quality. Your
television is specialized in graphical display and your
heating system in heating. Connecting these two systems
enables the heating system to show the current
temperature in your living room via your television. In
addition, you can use your remote control to change the
room temperature or to program a temperature schedule
for the coming week. The latter possibility requires an
advanced displaying device, which, if integrated with the
heating system, would have a dramatic impact on price.
The costs to realize connectivity between devices are
dropping sharply. Consequently, increased connectivity
can strongly improve the ease-of-use, with only little
impact on price.

The wish to connect devices calls for techniques for
composing applications. Middleware is emerging as a

key technology for constructing and integrating
distributed applications. Middleware forms a layer
between the application and the network, and allows
applications to use functionality that resides on remote
systems. Important middleware standards are OMG’s
Common Object Request Broker Architecture (CORBA),
Microsoft’s Distributed Component Object Model
(DCOM), and Sun’s Java Remote Method Invocation
(Java/RMI). Examples of more recent middleware
systems are Sun’s Jini and Microsoft’s .NET.

CMG is acting in the domain of automated testing,
and recently extended its tool-set to test embedded
software [2]. For this purpose, a host system running the
software that controls the testing (typically a PC) and an
embedded system running the software to be tested had
to be connected. The middleware standards mentioned
above are unsuitable to realize this connectivity, because
they have too much impact on the embedded system. As
no suitable, generic solutions were available, CMG
developed ActiveLink: a highly portable small-sized
utility for generic cross-platform communication.

In this paper we present ActiveLink as a solution for
middleware for embedded systems. We discuss some key
architectural issues that are motivated from requirements
from the domain of embedded systems.

II. MIDDLEWARE REQUIREMENTS

Middleware is software that facilitates inter-
connectivity between applications in distributed
platforms. To this end, middleware provides a set of
services to applications running on separate systems
across a network. In Figure 1, the position of middleware
in the OSI 7-layer reference model is depicted [3].

An important goal of middleware is to simplify the
programming of distributed systems. One of the ways in
which it tries to achieve this is to make distribution of the
system transparent to the applications.

To apply middleware in embedded systems, some
specific requirements hold.

A. Platform support

A characteristic of the embedded systems domain is
its large diversity of processor architectures (e.g. x86,
MIPS, ARM, SPARC, TriMedia) and operating systems
(e.g. Windows, pSOS, VxWorks, Solaris). Middleware
for embedded systems should be applicable to a large
subset of these platforms. Hence platform-specific
assumptions must be avoided.

B. Protocol support

Embedded systems typically communicate using low-
level protocols at the physical boundaries of devices. A
large variety of such protocols exists (e.g. RS-232, USB,
and TCP/IP) and sometimes even dedicated protocols are
used. Middleware for embedded systems should support
a large subset of these protocols. Hence, it should not
make any assumptions on the protocol and be easily
extensible with new protocols.

C. Size

The available resources of embedded systems, such as
processing power and memory size, varies considerably.
To be applicable in this wide range of embedded
systems, the memory footprint of the middleware should
not exceed 25% of the total memory space. Given an
average of 64kB memory for an embedded system, the
middleware may consume up to a maximum of 16kB.

III. ARCHITECTURE

 Existing middleware systems do not meet the
requirements for the embedded systems domain as
discussed in Section II. For example, platform and
protocol support is often limited to a set of known
standards and cannot be easily extended. Furthermore,
the functionality of existing middleware solutions is
often very elaborate, having a dramatic impact on the
size of the software. This motivated us to develop a
custom middleware layer, i.e., ActiveLink. This section
describes the most important features of the ActiveLink
architecture, using aspects as defined in [4].

A. Interaction style

ActiveLink provides a request-response interaction
style based on remote procedure call (RPC), see Figure 2.
An ActiveLink broker provides means to register
services, to query remote services and to invoke remote
services. ActiveLink does not provide mechanisms for
locating or matching of services with requests. As a
result, applications must know and explicitly specify the
location of the application they need to communicate
with.

Figure 3 shows the top-level architecture of
ActiveLink. ActiveLink is a symmetric solution, i.e.,

identical modules run on both systems. These modules
contain the broker and proxy functionality. An arbitrary
network of applications can be configured by setting up
multiple simultaneous peer-to-peer connections between
them.

A feature in which ActiveLink differs from other
middleware approaches is that it offers a programmers
interface for remote memory management. Services are
supported for memory allocation and de-allocation and
memory copying between the local and the remote
address space. These services enable client applications
to freely inspect computational results on the server side,
with only minimal impact on the remote system.

B. IDL interface definition languages

To span different languages, some middleware
approaches require interfaces to be specified in a
language-neutral Interface Definition Language (IDL).
Typically, an IDL provides means for specifying method
names, method types, and parameter types. In some
cases, mechanisms exist to group interfaces into larger
units.

ActiveLink supports only an interface to the C
language. Hence there was no need for a full-blown IDL.
During initialization of ActiveLink, a server application
registers a list of functions that can be called remotely by
client applications. The server application only has to
register the function names. No information has to be
provided about the number of function parameters or
their types. ActiveLink can thus be called weakly typed
in the sense that it is the responsibility of the client
application to call a remote function with the proper
number and type of parameters.

C. Proxy

To hide distribution, middleware systems create local
programs, called proxies, to represent remote (either
client or server) services. A client-side proxy and server-
side proxy communicate with each other by transmitting
requests and responses. The task of a proxy is to manage
this flow of messages between clients and servers.

In ActiveLink, a remote function is called by passing
the function name and parameters to the broker. The
broker in its turn communicates with the remote system,
after which the function will be invoked. The broker is
responsible for returning the function result.
Furthermore, the broker notifies the client application if
it tries to invoke a remote function that is not registered.

In ActiveLink the proxy functionality is integrated
with the broker functionality in one module.

D. Marshalling

Marshalling is concerned with the encoding of a
request or response into a form suitable for transmission

across an infrastructure and for the decoding at a remote
system. Difficulties arise when parameters are passed by
reference to an other address space.

Even though ActiveLink is weakly typed, it is capable
of dealing properly with function parameters and return
values. All basic C types are automatically marshalled
for function requests and responses. Compound types,
like structure and union types, are not supported by
ActiveLink and must explicitly be transferred by the
client application. Besides this, the client application is
responsible for properly handling references to other
memory spaces.

E. Binding

The establishing of a connection between a client and
a server is called the ‘binding’ of these parties. We speak
of static binding when an application (either client or
server) is compiled with knowledge of requested service
interfaces (e.g. provided by an IDL specification). In
general, applications do not have built-in knowledge of
services available elsewhere in the system. Then,
applications have to find out about other services at run-
time. This is called dynamic binding and allows for more
independent development and run-time extension of
systems. However, it does require more overhead in the
form of brokering mechanisms that typically incur larger
execution cost.

In ActiveLink, no knowledge is required of the
remote functions during compilation. Binding is
performed during run-time. To overcome the
performance penalty incurred by dynamic binding, a
mechanism if offered that distinguishes reference
retrieval from reference usage.

Reference retrieval takes care of the dynamic
mapping between a service, i.e., a function name, and its
reference. Reference retrieval should be done once and
can be done when performance is not critical, e.g., during
initialization. Subsequently, the retrieved reference can
be used very efficiently to call the remote function. The
retrieved reference can be reused as many times as
required, without any further performance loss because
of reference retrieval.

IV. CONCLUSIONS

In the development and deployment of embedded
software, communication between multiple devices is
often required. Middleware is a software technology that
facilitates the communication between distributed
applications. In this paper we listed key requirements for
middleware for the embedded systems domain. Because
current mainstream middleware does not meet these
requirements, ActiveLink was developed as a solution
for generic application-level cross-platform

communication. ActiveLink has a number of features
that make it especially suited for embedded systems:
• a very small memory footprint,
• remote procedure calling, and remote memory access

and management,
• easily portable across platforms due to minimal

platform dependencies,
• easily extensible with new protocols.

CMG integrated ActiveLink in its Embedded
TestFrame architecture. This is a generic solution for the
development of automated test suites for embedded
software. The responsibility of ActiveLink in this
architecture is to facilitate the connectivity between the
embedded system under test and the host that stores the
test suite. The Embedded TestFrame architecture is
successfully being applied in several projects of CMG
and of its customers.

Future enhancements to ActiveLink include support
for user-defined interaction styles (such as streaming and
events), removing dependencies on multi-threading
operating systems, and support for dealing with
unreliable protocols. Because extensions incur the risk of
violating the footprint requirements, current research is
focusing on development of a tailorable architecture
where only the required modules can be used, leaving out
other parts.

REFERENCES

[1] B. Venemans, “Redesign of a flexible cross-
platform communication utility”, thesis for the
Master of Technological Design in Software
Technology program, Stan Ackermans Institute,
Eindhoven University of Technology, The
Netherlands, 2001.

[2] Harro S. Jacobs, Peter H.N. de With, “Embedded
TestFrame, An Architecture for Automated Testing
of Embedded Software”, Proceedings of the first
PROGRESS workshop on Embedded Systems, The
Netherlands, October 2000.

[3] R.J. Norman, “Middleware: CORBA and DCOM”,
SDSU IDS Department Working Paper, October
1997.

[4] F. Plasil, M. Stal, “An Architectural view of
Distributed Components in CORBA, Java RMI, and
COM/DCOM”, Software Concepts and Tools,
Springer, 1998.

