
at
h-

he
not

st
e,
an
ass

in
les
n-
ty
el
rn

f
as
n
ob-
a
e

n.

f
his
ch

s
ts
sor
to

are

s-
tric

Testability during Design

Stefan Jungmayr
FernUniversität Hagen, Lehrgebiet Praktische Informatik III

Universitätsstraße 1, 58084 Hagen, Germany
stefan.jungmayr@fernuni-hagen.de
Abstract: Testability is an important characteristic of a
software system which has to be considered during all
phases and activities of software development. This article
describes for object-oriented systems 1) testability issues
related to dependencies which are relevant during design
and 2) a new approach based on metrics to locate depen-
dencies that are critical for testing.

1 Introduction
Testability is a major factor determining the time and

effort needed to test a software system. It is costly to rede-
sign a system during implementation or maintenance in
order to overcome a lack of testability. Therefore it is
important to deploy testability into the system continually
right from the beginning. Relevant testability issues during
requirements capture and analysis have been discussed
briefly in [3].

There is a large number of software-related factors
that effect testability during design. We have grouped
them together into a set of nine main testability factors:
complexity, separation of concerns, coupling, fault local-
ity, controllability, observability, automatability, built-in-
test capability, and diagnostic capability.

In the first part of this article we describe testability
issues relevant during software design and focus on cou-
pling caused by dependencies. In the second part we
present an approach to define (testability) metrics for
dependencies and to locate test-critical dependencies.

2 Testability Issues during Design

2.1 Hard-Wired Dependencies on Classes
During unit test we want to test a class in isolation.

Therefore we want to substitute each server class by a stub
or mock object [5]. A server class can not be substituted
without changing the source code of the client class if a
dependency to the server class is hard-wired, for example
because the client class creates an instance of the server
class using its constructor or because the client class uses
static members of the server class.

In order to break hard-wired dependencies 1) make
another class responsible to establish the link between the
client class and the server class, or 2) let another class
establish a link from the client class to an instance of a fac-
tory class which allows the client class to get access to an
object implementing the type of the server class, or 3)
make the client class only aware of the type of the server

class and set the link to an instance of the server class
run-time, e.g. by reading a configuration file or by searc
ing a particular directory of the file system.

2.2 Dependencies to Classes
If we want to stub a server class we can implement t

stub as a subclass of the server class. This approach is
feasible if the stub should inherit from some other (te
framework) class and multiple inheritance is not availabl
or if the class implements the Singleton pattern [1] and c
not be subclassed. To avoid this let every test relevant cl
implement an interface which is known by its clients.

2.3 Cyclic Dependencies between Classes
Classes within a dependency cycle can not be tested

isolation. Implementing stubs to break dependency cyc
causes additional effort. Therefore try to break depe
dency cycles by extracting interdependent functionali
into a common server class ("demotion") or a higher-lev
class ("escalation") [4], or by using the Observer patte
[1].

2.4 Cyclic Links between Objects
Cyclic links between objects lead to the problem o

re-entrance [9]. Maintaining a consistent object state
well as finding and correcting errors becomes difficult i
the presence of re-entrance situations. To avoid these pr
lems prefer hierarchical structures of object links, use
polling mechanism to avoid cyclic relationships, or use th
Command pattern [1] to reduce coupling in one directio

2.5 Dense Object Network
Within a dense object network a large number o

objects are referenced by more than one other object. T
increases the probability of unwanted side-effects whi
makes it more difficult to locate errors.

Try to avoid dense object networks by calling method
with copies of parameter objects if the original objec
shall not be changed. Return new objects from acces
methods [2]. Use immutable objects wherever possible
avoid side-effects in case of shared access [6]. Decl
attributes as final wherever appropriate.

3 Dependencies and Testability
Metrics can be used to evaluate the testability of sy

tems and its components. We have adapted the me
ACD from [4] to evaluate overall coupling within a sys-

n-
s -

be
to

h
se
ies,
nse
n

ne
-

an
he
ng

e

,"

"

,

ti-

-

tem. ACD, the average component dependency, is the
average number of components a system component
depends on directly and indirectly.

Local dependencies can have a global effect on test-
ability. Metrics that measure local characteristics of com-
ponents (like coupling for classes) or global characteristics
of an entire system (like the ACD) do not address this phe-
nomenon.

We introducereduction metricsto evaluate the impact
of a particular dependency on a particular quality charac-
teristic (like testability). A reduction metricrm describes
the degree to which the value of a quality metricm is
reduced if a dependencyd ∈ D is removed (withD being
the set of all dependencies within the system).

The value of a reduction metricrm in percent is
defined as follows:

A value of a reduction metric greater than zero in gen-
eral means that testability improves if the dependency is
removed.

As an example we define a reduction metric rACD
based on the metric ACD. Figure 1a shows a dependency
structure with four components. The value of ACD for this
dependency structure is (0 + 0 + 2 + 3) / 4 =1.25. When
we remove dependencyx (Figure 1b) the ACD value
doesn’t change. The value of metric rACD for dependency
x is therefore (1 - 1.25 / 1.25) x 100 = 0 percent.

When we remove dependencyy instead (Figure 1c)
the ACD value decreases from 1.25 to 1.0. The value of
metric rACD for dependencyy is (1 - 1 /1.25) x 100 = 20
percent.

Figure 1: Removing a dependency

Reduction metrics can be used to rank dependencies
based on their impact on overall testability. Dependencies
that rank high are called test-critical dependencies. In the
example above, dependencyy is more test-critical than
dependencyx with respect to metric rACD.

Figure 2 shows the values of metric rACD in decreas-
ing order for the first 10 percent of the dependencies of a
system with overall 1853 dependencies and 324 classes.
As we can see from this figure, the test-critical dependen-
cies (with respect to reduction metric rACD) are a small
fraction of the dependencies with a very high to high
impact on the ACD of the entire system.

Figure 2: Values of reduction metric rACD

Four case studies have shown that test-critical depe
dencies are good indicators of design and test problem
many of the most test-critical dependencies could
traced back to a small set of design problems which led
explicit test problems in a number of cases.

4 Summary
There is a large number of testability issues whic

have to be considered during design. A subset of the
issues relate to dependencies. Hard-wired dependenc
cyclic dependencies on class and object level, and de
object networks make testing more difficult. Using desig
guidelines and reviews to avoid testing problems is o
part of the solution to increase testability. Still, local mea
sures may not be able to identify dependencies with
exceedingly negative impact on system structure. T
reduction metrics presented in this article are a promisi
new approach to fill this gap.

References

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, "Design
Patterns: Elements of Reusable Object-Oriented Softwar,"
Addison-Wesley, 1994.

[2] M. Grand, "Patterns in Java," Volume 2, John Wiley &
Sons, 1999.

[3] S. Jungmayr, "Testbarkeit in den frühen Projektphasen
Softwaretechnik-Trends, vol. 21, no. 3, Nov. 2001.

[4] J. Lakos, "Large-scale C++ software design," Addison-
Wesley, 1996.

[5] J. Link, "Einsatz von Mock-Objekten für den Softwaretest,
JAVA Spektrum, no. 4, July/August 2001, pp. 53-59.

[6] B. Liskov and J. Guttag, "Program development in JAVA:
abstraction, specification, and object-oriented design"
Addison-Wesley, 2001.

[7] K. Pemmaraju, "Effective test strategies for enterprise-cri
cal applications,"Java Report, Dec. 1998.

[8] A. J. Riel, "Object-Oriented Design Heuristics," Addison-
Wesley, 1996.

[9] C. Szyperski, "Component Software. Beyond Object-Ori
ented Programming," Addison-Wesley, 1997.

rm d()
1 m D\ d{ }()

m D()--------------------------– 
  100× …if m D() 0≠()

0………………………else………





=

(b) (c)(a)

ACD 1.25 1.25 1.0

y

x

dependencies sorted by rACD

181161141121101816141211

r
A
C
D

[
%
]

10

8

6

4

2

0

	1 Introduction
	2 Testability Issues during Design
	2.1 Hard-Wired Dependencies on Classes
	2.2 Dependencies to Classes
	2.3 Cyclic Dependencies between Classes
	2.4 Cyclic Links between Objects
	2.5 Dense Object Network

	3 Dependencies and Testability
	4 Summary
	References

