Testability during Design

Stefan Jungmayr
FernUniversitat Hagen, Lehrgebiet Praktische Informatik 111
Universitatsstrae 1, 58084 Hagen, Germany
stefan.jungmayr@fernuni-hagen.de

Abstract: Testability is an important characteristic of aclass and set the link to an instance of the server class at
software system which has to be considered during allin-time, e.g. by reading a configuration file or by search-
phases and activities of software development. This articlag a particular directory of the file system.

describes for object-oriented systems 1) testability issues

related to dependencies which are relevant during desigr? Dependencies to Classes

and 2) a new approach based on metrics to locate depen- If we want to stub a server class we can implement the

dencies that are critical for testing. stub as a subclass of the server class. This approach is not
) feasible if the stub should inherit from some other (test
1 Introduction framework) class and multiple inheritance is not available,

Testability is a major factor determining the time and®' if the class implements Fhe Singleton pattern [1] and can
effort needed to test a software system. It is costly to red89t be subclas;ed. To av0|q th!s let every test re_Ievant class
sign a system during implementation or maintenance #Plement an interface which is known by its clients.
order to overcome a lack of testability. Therefore it is . .
important to deploy testability into the system continuallf'3 Cyclic Depehdenmes between Classes)
right from the beginning. Relevant testability issues during ~ Classes within a dependency cycle can not be tested in
requirements capture and analysis have been discuségffation. Implementing stubs to break dependency cycles
briefly in [3]. causes additional effort._ Thgrefore try to break .depe.n-

There is a large number of software-related factorgency cycles by extracting mterdependent fupctlonallty
that effect testability during design. We have groupedto & common server class (*demotion”) or a higher-level
them together into a set of nine main testability factorsc/ass (“escalation”) [4], or by using the Observer pattern
complexity, separation of concerns, coupling, fault locall1l-
ity, controllability, observability, automatability, built-in- - :
teyst capability, a):]d diagnosticycapability. ’ 2.4 CyCII'C I._mks between O?JeCtS

In the first part of this article we describe testability ~ CYclic links between objects lead to the problem of
issues relevant during software design and focus on coff-€ntrance [9]. Maintaining a consistent object state as
pling caused by dependencies. In the second part weell as finding and correctmg errors become_s difficult in
present an approach to define (testability) metrics tdhe presence Qf re—en_trance situations. To_av0|q these prob-
dependencies and to locate test-critical dependencies. lems prefer hierarchical structures of object links, use a

polling mechanism to avoid cyclic relationships, or use the

2 Testability Issues during Design Command pattern [1] to reduce coupling in one direction.

2.1 Hard-Wired Dependencies on Classes 2.5 Dense Object Network

During unit test we want to test a class in isolation. Within a dense object network a large number of
Therefore we want to substitute each server class by a stiBi€cts are referenced by more than one other object. This
or mock object [5]. A server class can not be substituteficréases the probability of unwanted side-effects which
without changing the source code of the client class if B12kes it more difficult to locate errors. _
dependency to the server class is hard-wired, for example TrY t0 avoid dense object networks by calling methods
because the client class creates an instance of the serdf copies of parameter objects if the original objects

class using its constructor or because the client class usdll not be changed. Return new objects from accessor
static members of the server class. methods [2]. Use immutable objects wherever possible to

In order to break hard-wired dependencies 1) mak@vo.id side—eff_ects in case of shargd access [6]. Declare
another class responsible to establish the link between tABributes as final wherever appropriate.
client class and the server class, or 2) let another clags . -
establish a link from the client class to an instance of a fac;z‘2 Dependencies and Testability
tory class which allows the client class to get access to an Metrics can be used to evaluate the testability of sys-
object implementing the type of the server class, or 3ems and its components. We have adapted the metric
make the client class only aware of the type of the serv&CD from [4] to evaluate overall coupling within a sys-

tem. ACD, the average component dependency, is tF= 1o
average number of components a system compone
depends on directly and indirectly.

Local dependencies can have a global effect on tes 8
ability. Metrics that measure local characteristics of com
ponents (like coupling for classes) or global characteristic
of an entire system (like the ACD) do not address this phe 6
nomenon.

We introducereduction metricgo evaluate the impact
of a particular dependency on a particular quality charac 4
teristic (like testability). A reduction metrig, describes
the degree to which the value of a quality metnicis
reduced if a dependenay D is removed (withD being
the set of all dependencies within the system).

The value of a reduction metrig,, in percent is
defined as follows:

rACD [%

121 141 161 181

E%l—m(D\{ d})H>< 100 if(m(D) % 0) dependenci es sorted by rACD
rm(d) =0 m(D) Figure 2: Values of reduction metric rACD

E 0 else
Four case studies have shown that test-critical depen-

A value of a reduction metric greater than zero in genQlencies are good indicators of design and test problems -
any of the most test-critical dependencies could be

eral means that testability improves if the dependency [§) -
removed. traced back to a small set of design problems which led to
As an example we define a reduction metric rAcCEXPIiCit test problems in a number of cases.
based on the metric ACD. Figure 1a shows a dependenﬁy Summar
structure with four components. The value of ACD for this y
dependency structure i® ¢ 0 + 2 + 3) / 4 =1.25. When There is a large number of testability issues which
we remove dependency (Figure 1b) the ACD value have to be considered during design. A subset of these
doesn't change. The value of metric rACD for dependendgsues relate to dependencies. Hard-wired dependencies,
x is therefore (1 - 1.25/ 1.25) x 100 = O percent. cyclic dependencies on class and object level, and dense
When we remove dependengyinstead (Figure 1c) object networks make testing more difficult. Using design
the ACD value decreases from 1.25 to 1.0. The value @fuidelines and reviews to avoid testing problems is one
metric rACD for dependencyis (1 - 1/1.25) x 100 = 20 part of the solution to increase testability. Still, local mea-
percent. sures may not be able to identify dependencies with an
exceedingly negative impact on system structure. The
@) (b) ©) reduction metrics presented in this article are a promising
new approach to fill this gap.

y - References

ACD 1.25 1.25 1.0 [1] E.Gamma, R. Helm, R. Johnson, and J. Vlissid&gsign
Figure 1: Removing a dependency igtctﬁesrgrs]ivl\ilgesrlrg/ntlsgts);;Reusable Object-Oriented SoftWware

Reduction metrics can be used to rank dependencit&d '\S/lc'm%ralg%gpattems in Javd Volume 2, John Wiley &

based on their impact on overaI.I _testability. Dep(_endenciet§] S. Jungmayr, "Testbarkeit in den friihen Projektphasen,”
that rank high are called test-critical dependencies. In the Softwaretechnik-Trengsol. 21, no. 3, Nov. 2001.

example above, dependengyis more test-critical than [4] J. Lakos, Large-scale C++ software desighAddison-
dependency with respect to metric rACD. Wesley, 1996.

. . . [5] J.Link, "Einsatz von Mock-Objekten fur den Softwaretest,"
Figure 2 shows the values of metric rACD in decreas JAVA Spektrummo. 4, July/August 2001, pp. 53-59.

ing order for the first 10 percent of the dependencies of B. Liskov and J. Guttag, Program development in JAVA:
system with overall 1853 dependencies and 324 classes. abstraction, specification, and object-oriented design,
As we can see from this figure, the test-critical dependen- ~Addison-Wesley, 2001.

cies (with respect to reduction metric rACD) are a smalm K. Pemmaraju, "Effective test strategies for enterprise-criti-
cal applications,Java ReportDec. 1998.

fraction of the dependencie; with a very high to higr[8] A. J. Riel, "Object-Oriented Design Heuristi¢sAddison-
impact on the ACD of the entire system. Wesley, 1996.
[9] C. Szyperski, Component Software. Beyond Object-Ori-
ented Programmin) Addison-Wesley, 1997.

	1 Introduction
	2 Testability Issues during Design
	2.1 Hard-Wired Dependencies on Classes
	2.2 Dependencies to Classes
	2.3 Cyclic Dependencies between Classes
	2.4 Cyclic Links between Objects
	2.5 Dense Object Network

	3 Dependencies and Testability
	4 Summary
	References

