
Formal Verification and Validation
of Smart Cards

Stefan Kriebel, Giesecke & Devrient
Stefan.kriebel@de.gi-de.com

SOCRATES is a test tool for chip card tests. It is
suitable to produce automatic tests for all kind of
chip cards. SOCRATES is an open tool which
supports a variety of different test strategies. This
variety goes from simple action word testing to
formal testing.
The components of SOCRATES are decision
tables, test scripts, simulators if necessary and the
kernel of the tool itself.

Decision Tables: For each command there is a so
called decision table in form of an Excel sheet. The
decision table describes the different cases of a
command. A case is named by a letter form A to Z
and consists of a set of variable settings and a
expected return value. For the variable settings a
PROLOG like expression is used. With these
expressions the command parameters are defined
and pre- and post-conditions can be set. If a
command case is activated during runtime, the pre-
conditions are checked and the post-conditions are
written after successful command execution. The
whole system of conditions is stored in a database
which determines the actual state of the chip card.
For further details see below.
Test Scripts: The test script contains a sequence of
commands also called action words. A command is
defined by a command name and a case letter as
listed in the decision table. Parameters set in the
decision table can be overwritten in the script. The
script allows also control structures like for-loops,
if-else statements and includes of other scripts.
Simulators: Beside the simulation provided by the
pre- and post-conditions in the decision table,
additional Simulators can be attached to
SOCRATES. For each command a C++ code is
generated where the simulator routines can be
placed. This may be used for complex data
modelling e.g. cryptographic computations.
SOCRATES Core: The core reads the test script,
finds the command in the decision table, evaluates
the conditions in the table and computes the actual
command parameters. If necessary a simulator is
called to calculate command data. The command is
sent to the chip card and the response is received.
The response is checked against the expected return
value and the expected data. If the check is
successful the post-conditions are set.

Socrates can be used in a variety of ways. Two
strategies are briefly explained, formal testing and
script based testing.
Formal testing in the sense used here means to map
requirements given in the specification of the
product to a formal description in the decision
table. In the decision table a PROLOG like
expression, a predicate, can be used to define the
requirements. These predicates, i.e. the transformed
requirements, create the previously designed formal
model when used as pre- and post-conditions.
Requirement 1, for example, is described with a
pre-condition that the variable „df_exist“ shall
contain the current file identifier FID provided by
the command SelectFile. The variable „df_exist“ is
set as post condition when the file is created.
Another requirement 3 denotes, that P1 has a good
case value of 0. Requirement 2 is implemented by
setting the variable „cur_df“ to the actual file-Id. In
the matrix of the decision table the value "1" means
the condition has to be fulfilled, the value "0"
means the conditions must not be fulfilled and the
value "*" means the condition is ignored.
The test coverage can be proved by checking that
for each pre-condition at least a "1" and a "0"
occurs in the table. If all cases of all commands are
run, all captured requirements are covered. In an
enhanced version of SOCRATES a command
tracking feature can be used where the command
sequence is automatically generated out of the cross
linking of pre and post conditions. If e.g. in the
upper example a good case is issued and no file is
created, SOCRATES searches for a command
which sets the post-condition (df_exist FID) in this
case a Create File command.
Experience with this method showed that for
complex requirements the decision tables may grow
extremly large. In this case they are difficult to
understand and to maintain because the cross link
of pre and post conditions may not be easy to trace.

