
Tool Support for the Distribution of Object-Based Applications 
 

Ansgar Radermacher, Diss. RWTH Aachen 

Electronic Publication under http://www.bth.rwth-aachen.de/ediss/ediss.html 

 

The development of a distributed application is hard compared to the development of a 

monolithic program. The developer has to cope with network programming and the possibility 

of failures. 

There are tools that alleviate the task of the developer. They offer a suitable abstraction of the 

communication between two disjoint program parts that is close to the typical means of 

exchanging information in an imperative programming language: a procedure call or a 

method invocation. These techniques are called middleware because they bridge the 

abstraction of the operating systems API with that of the programming language. Well-known 

middleware techniques comprise the OMG standard CORBA, Microsoft’s DCOM and Java’s 

RMI. 

The use of such techniques eases the development of a distributed application considerably. 

However, there are deficiencies: 

� Middleware-specific code can not be isolated in a single module, it is spread 

throughout the application code. This makes it difficult to adapt the program to 

another middleware or a new distribution structure. 

� Middleware has certain restrictions; it is for example not possible to instantiate an 

object in a remote address space. The developer has to ensure that an object is created 

in the intended address space. 

� There is no visual specification of the distribution structure. 

In order to overcome these problems we study additional tools on top of the middleware that 

allow for the specification of the distribution structure and the components inside a distributed 

systems. But almost all of these approaches use a particular language for specifying the 

components that form the distributed application. The properties of such a language prevent 

the violation of prerequisites of the middleware for all possible distribution structures, for 

example by restricting communication to an exchange of messages. This limits the use of 

these a-priori approaches: they could not be applied, if a program is already existent in a 

“conventional” programming language. 

The a-posteriori distribution of an existing program is not captured by these approaches with 

the exception of general CASE tools offering minimal distribution support (for example the 

generation of a CORBA interface definition). In order to achieve conformance with 

middleware prerequisites, an existing program has to be restructured in a suitable way. 

The approach in this thesis is based on the enrichment of a class diagram with distribution 

information. This information has to be supplied by a developer. An algorithm employs this 

information and checks whether distribution prerequisites are violated. The developer can 

now either reconsider the distribution structure or transform the application according to 

predefined transformation rules. An example is a rule that inserts on object to which 

instantiation request could be delegated. This object is called a factory. A side effect of the 

transformation is the conformance to certain design rules, also called design patterns. 

The implementation of our approach employs the internal representation of the class diagram 

as a graph. Graph tests find places in a graph that conform to the given subgraph pattern. 

Graph rewrite rules transform a graph by replacing the subgraph given in the left-hand side of 

the rule with the subgraph specified in the right-hand side. The graph rewrite rule is 

accompanied by a source code transformation implemented in Java. A prototype that is able to 



execute the graph rewrite rules can be generated from a specification by means of the 

programmed graph rewriting system PROGRES. 

 

Referee: Prof. Dr.-Ing. M. Nagl 

Coreferee: Prof. Dr. rer. nat. A. Schürr 

Oral exam: March 3, 2000 

 


