
Management of Development Processes – An Evolutionary Approach

Ansgar Schleicher, Diss. RWTH Aachen

Deutscher Universitäts-Verlag, Wiesbaden, 2002

The management and coordination of development processes in technical domains is a

difficult task. Development teams are growing in size and the advancing globalization

imposes a higher pressure to develop more competitive products faster and cheaper. The

employment of process management systems (e.g. workflow management or project

management systems) promises improvements in terms of planning and monitoring support or

even developer guidance and coordination.

However, long-term studies have revealed that current process support technology, which has

proven useful for routine, repetitive processes, is insufficient for development process

management. Development processes are of an inherently dynamic nature. Changing

requirements and standards, unexpected feedback or the dependence of the process on its own

intermediate results disable the a-priori planning of the complete process and lead to its

continuous evolution. Furthermore, the knowledge about development processes is often

heterogenous with respect to its preciseness and completeness. Available process management

systems are incapable of addressing the inherent evolution and the heterogeneous available

process knowledge. Both, managers and developers agree on their inflexibility, which

disables managers to react to ad-hoc situations and hinders developers in their creativity.

This book describes the concepts behind and the implementation of a process management

system addressing these issues of supporting process evolution and the handling of

heterogenous process knowledge. The concepts are based on our studies of real development

processes in the domain of chemical engineering, which have led to new requirements. These

requirements and an ideal system structure are described within a conceptual framework,

which identifies and interrelates the necessary concepts and builds the terminological and

conceptual foundation for this book. The framework proposes a four-layer view onto process

management. The first layer reflects the real process being performed by the developers. The

real process is mapped and guided within the process model instance layer. Reusable process

knowledge is kept within the process model definition layer. Process model definitions can be

instantiated to create new process model instances. The syntax and semantics of the process

model definition and instance are defined within the process meta model layer, where an

enactable process modeling language is offered.

The essential contributions of this framework and its realization with respect to process

evolution and process knowledge management support are as follows:

� Process model instances, which map and guide the real process, can be created,

maintained and enacted in an interleaved fashion. A process manager is enabled to

plan the process as far ahead as the current situation permits. He can complete and

revise the plan as necessary, even when the process is already performed by the

developers.

� The framework does not enforce the consistency of process model definitions and

instances. As a result, a process manager or developer may deviate from the plan, if

necessary. The system detects occurred inconsistencies and signals and explains them

to the process participants. Inconsistencies may remain persistent, but can also be

removed by applying the interleaved manipulation and enactment facilities.

� Process model instances can be created from process model definitions with any

degree of preciseness. By consequence, the full range of process model instances, from

ad-hoc to consistent with respect to a given process model definition, can be

supported. This enables the discovery and the improvement of a process (model)

through the application of the process management system.

� Process model definitions can be infered from ad-hoc or inconsistent process model

instances. These implicitly carry new knowledge about a process, which has not been

modeled before. An inference tool aids the process modeler in discovering new

knowledge about a process and in creating new or revising existing process model

definitions.

� The process model definition is expressed and maintained in the Unified Modeling

Language, which enables abstract, visual and object-oriented modeling of processes.

Changes to the process model definition, which may be induced by the inference

mechanism or a process modeler, can be applied on the level of separate packages

through a fine-grained versioning mechanism.

� Changed process model definitions may be propagated onto their enacting instances. A

migration technique allows for the migration of a process model instance from an old

to a new version. The proposed migration algorithm is guaranteed to be applicable,

because it is based on the inconsistency toleration mechanism. We have particularly

considered the requirement of leaving the manager in control of his managed process

and of supporting economically and motivationally sensible migration of instances.

As this description suggests, the singular concepts are highly interrelated. Their integration

yields synergetic effects. These are unobtainable, when only realizing a cutout of the proposed

framework. The discovery of new process knowledge, the interleaved editing and enactment

of process model instances within or outside of the constraints imposed by the process model

definition, the latter’s continuous and fine-grained changeability and the guaranteed

migratability of process model instances amount to a process management system offering

roundtrip process evolution support and wide spectrum process knowledge management

capabilities.

Referee: Prof. Dr.-Ing. Manfred Nagl, RWTH Aachen

Coreferee: Prof. Dr. Theo Härder, Universität Kaiserslautern

Oral exam: March 8, 2002

