
9 Case Studies in Aspect Mining
Silvia Breu
Lehrstuhl für Softwaresysteme, Universität Passau
breu@fmi.uni-passau.de

9.1 Motivation

A major problem in software re-engineering based on
aspect-oriented principles lies in finding and isolating
crosscutting concerns. This task is called aspect mining.
The detected concerns can be re-implemented as separate
aspects. This reduces the complexity, and improves the
comprehensibility of software systems. Thus, aspects fa-
cilitate software maintenance and extension. Aspect min-
ing can also provide us with insights that enable us to
classify common aspects which occur in different software
systems, such as logging, timing, and communication.

Several approaches based on static program analy-
sis techniques have been proposed for aspect mining

[vDMM03]. Our approach [BK03] is the first dynamic
program analysis approach. It mines for aspects based
on program traces that are generated during program ex-
ecution, and monitor the run-time behaviour of a software
system. These traces are then investigated for recurring
execution relations. Different constraints specify when an
execution relation is “recurring”, such as the requirement
that the relations have to exist more than once or even in
different calling contexts in the program trace. The dy-
namic analysis approach has been chosen because it is a
very powerful way to make inferences about a system: It
dynamically monitors actual program behaviour (run-time
behaviour) instead of potential behaviour—as static pro-
gram analysis does.



The approach has been implemented in a prototype
called DynAMiT (Dynamic Aspect Mining Tool) and eval-
uated in several case studies over systems with more than
80 kLoC. As we will see, the technique is able to identify
automatically both seeded and existing crosscutting con-
cerns in software systems.

9.2 Case Study “AspectJ example telecom”

A case study has been conducted in order to verify how
successful the developed analysis approach can be applied
to a new field: Can DynAMiT also detect crosscutting con-
cerns in Java programs which are already extended by as-
pects written in AspectJ?

For that purpose the telecom example (included in the
distribution of AspectJ) has been chosen: There, peo-
ple can make telephone calls with different connection
types (local and long-distance). The simulation can be
executed at three different levels: BasicSimulation

just performs the calls with the basic functionality
needed for making phone calls (call, accept, hang up
etc.) TimingSimulation is the extension with a tim-
ing aspect which keeps track of a connection’s dura-
tion and cumulates a customer’s connection durations.
BillingSimulation is a further extension with a billing
aspect that adds functionality to calculate charges for
phone calls of each customer based on connection type and
duration. Due to space limitations we describe only some
of the detected aspect candidates.

Analysis Results for BasicSimulation. This analysis
provides us with crosscutting concerns as well as some
insights in the usual sequence of actions in phone calls.
The application of the execution relation constraints tells
us that the simulation visualises the steps a customer is
doing, such as calling someone, answering the phone or
hanging up. When someone calls another person, the ad-
dition of the call to the pipeline of the customer is done as
last thing. The same applies when a called person picks
up the phone—the call is added to his pipeline. Another
detected crosscutting concern reveals that after a customer
has hung up, the call has to be removed from his pipeline.

Analysis Results for TimingSimulation. The resulting
sets of aspect candidates in the TimingSimulation in-
clude those already detected in the BasicSimulation

(except for some re-namings). The analysis also discovers
functionality added by the application of the timing aspect.
For instance, the introduction of new fields is discovered:
A timer which keeps track of connection times is needed.
Before the timer can be started, stopped (or asked for the
time), one has to get hold of the timer belonging to the cor-
rect connection. Additionally, the timer is needed after a
connection is completed or dropped, and when caller and
receiver of a connection are determined.

Analysis Results for BillingSimulation. In the third
simulation (which includes the timing aspect and a billing
aspect on top of that) additional crosscutting concerns in-
troduced by the billing aspect are found. We find, for in-
stance, that before the call rate (local or long distance) for
a connection or the receiver of a connection is determined,
the current time of the timer is needed. Furthermore, the
analysis tells us that—after the correct call rate for a con-
nection is determined—the connection’s payer has to be
found out. After the paying customer is identified, the
charge for the phone call is added to that customer.

9.3 Case Study “Graffiti”
Graffiti1 (written in Java) is an industrial-sized editor for
graphs and a toolkit for implementing graph visualisation
algorithms. The software system currently has about 450
interfaces and (abstract) classes, over 3.100 methods and
comprises about 82.000 lines. The results of the analysis
applied to the Graffiti traces are huge. Only some interest-
ing findings get a closer look as a complete interpretation
of all results would be too elaborate. Besides, it would be
nearly equivalent to re-factoring the software system.

First of all, DynAMiT has detected a typical, well-
known crosscutting concern: logging. Several calls to a
method format of class SimpleFormatter as first and/or
last call inside several set- and add-methods were found.
A code investigation reveals that all executions of those
methods are logged in a log-file. For that, a logger pro-
vided by Java’s class Logger is used. Although we have
not traced Java API classes, we know that the logger
uses a formatter to transform the system’s log messages
into human readable messages. For this purpose, Graf-
fiti provides a class SimpleFormatter which implements
method format. Therefore, the analysis detects the for-
matting of the log-messages, and thus provides us with the
information that logging exists. The crosscutting logging
functionality is discovered and can be encapsulated into an
aspect in a re-engineering process.

The before-aspect candidate desribed in the following
is more of an informative nature. Graffiti can easily be
extended with graph algorithms by writing plugins. Ev-
ery algorithm has to implement method getName of in-
terface Algorithm. If a user wants to use a certain algo-
rithm, e.g. Dijkstra’s algorithm, this algorithm has to be
added following the plugin principle of Graffiti. In gen-
eral, every plugin a user wants to have available is reg-
istered on startup or (dynamically) later on when loaded.
Thus, for every used algorithm, an appropriate plugin has
to be added. To be able to determine the kind of the plu-
gin, and in order to have a unique string for each algorithm
plugin, the algorithm’s name is used, which is gained by
calling method getName of the corresponding algorithm.
Thus, DynAMiT discovers that getName in the appropri-
ate algorithm class is always preceded by an execution of
getAlgorithms of class GenericPluginAdapter.

1Graffiti version November 2003; now renamed to Gravisto.
http://www.gravisto.org



Some other retrieved first- and last-aspect candidates
tell that method isSessionActive of class MainFrame

is the first method executed inside methods isEnabled in
each of the classes FileCloseAction, ViewNewAction,
and RunAlgorithm. We also observe that this very call is
the last one inside isEnabled in those three classes. An
investigation of Graffiti’s source code confirms these anal-
ysis results: In the system’s architecture it can be seen that
class FileCloseAction, class ViewNewAction as well
as class RunAlgorithm extend abstract class Graffiti-
Action. Therefore, the question arises why this function-
ality has not been encapsulated into GraffitiAction fol-
lowing object oriented design principles. The reason for
that is quite simple: There are a lot more classes extend-
ing class GraffitiAction which do not have the same
functionality, e.g. class EditUndoAction or class Exit-
Action. So, the detected pattern (either first- or last-aspect
candidate) is a distinct crosscutting concern and thus a can-
didate for encapsulating this functionality into an aspect.

Method isSessionActive was also found as first-
aspect candidate in a method called update in class Edit-
RedoAction as well as in class EditUndoAction. A look
into the code tells that EditRedoAction and EditUndo-
Action both extend abstract class GraffitiAction. So
the question is again why the developers did not choose a
better design. But the analysis algorithm has detected this
pattern in only those two but not all of the classes which
extend GraffitiAction. A further investigation of the
source code confirms that result. This suggests that the de-
velopers have not been able to provide a different design
by encapsulating this concern into the superclass without
overriding methods in subclasses (which would be consid-
ered bad practice). The introduction of more inheritance

levels would not cure the problem either. There is no per-
fect solution in the sense of OOP, especially in Java as it is
not designed to provide multiple inheritance.

9.4 Conclusions
In summary we can say that the results for the three tele-
com simulations clearly show that the presented approach
identifies basic functionality and the functionality added
by the two different aspects. The analysis is performed
automatically, and did not produce any false positives.

In Graffiti it can be seen that a lot of the functionality is
crosscutting its architecture, e.g. actions like to open, save
or edit a file or a graph, respectively. It is worth thinking
about encapsulation using aspects to satisfy the need for
a proper design. Of course, this decision remains to the
programmer.

Acknowledgements
Thanks to Jens Dörre for his valuable comments.

Bibliography
[BK03] Silvia Breu and Jens Krinke. Aspect Min-

ing Using Dynamic Analysis. 5. Work-
shop Software-Reengineering, Bad Honnef.
(Published in: GI-Softwaretechnik-Trends,
Mitteilungen der Gesellschaft für Informatik,
23(2), pp. 21-22), May 2003.

[vDMM03] Arie van Deursen, Marius Marin, and Leon
Moonen. Aspect Mining and Refactoring.
In First International Workshop on REFac-
toring: Achievements, Challenges, Effects
(REFACE), 2003.


