
Software Evolution

1 EPOSee: A Tool For Visualizing Software Evolution Patterns
Michael Burch
Saarland University
michael@cs.uni-sb.de

Stephan Diehl
Catholic University Eichstätt-Ingolstadt
diehl@acm.org

Peter Weißgerber
Catholic University Eichstätt-Ingolstadt
peter.weissgerber@ku-eichstaett.de

Software archives contain historical information about the de-
velopment process of a software system. Using data mining tech-
niques patterns can be extracted from these archives. In this pa-
per we present our tool EPOSee 1 that allows to interactively
explore these patterns. For this particular application domain,
it extends standard visualization techniques for association rules
[1] and sequence rules [2] to also show the hierarchical order of
items. Clusters and outliers in the resulting visualizations pro-
vide interesting insights into the relation between the temporal
development of the system and its static structure.

1.1 Introduction
During the life time of a software system many ver-
sions will be produced. Analyzing the source code of
these versions, as well as documentation and other meta-
information can reveal regularities and anomalies in the
development process of the system at hand.

Industrial, as well as open source projects keep track
of versions and changes using configuration management
systems [3] like RCS and CVS. Other tools keep track of
additional information, e.g. bug databases or e-mails. The
information stored by a configuration management system
and related tools is called a software archive. The software
archive provides the history of a software system.

Previously we have used data mining to extract associ-
ation rules from such archives to characterize the develop-
ment process [4] or to support programmers [5]. In this pa-
per we discuss the visualization techniques that we imple-
mented to analyze association and sequence rules (which
in the following we call software-evolution patterns) and
show some kinds of insights that can be gained about the
evolution of a software system by visualizing these pat-
terns. To interactively explore the mining rules extracted
from software archives we developed EPOSee (see Fig-
ure 1.1) which provides the following visualizations:

• Visualization of Association Rules
– Pixelmap (overview, context)
– 3D Bar Chart (of selected rules, focus)

• Visualization of Sequence Rules
– Parallel Coordinate View (overview, context)
– Decision Tree (overview, context)
– 3D Branch View (of selected rules, focus)
– Rule Detail Window (of selected rule, focus)

• Histogram (distribution of confidence and support)
In addition, rules can be filtered according to their sup-

port and confidence, searched for keywords, and various
schemes can be used for color-coding. All visualizations
shown in this paper have been produced with EPOSee.

Figure 1.1: EPOSee
The items in the software-evolution patterns are soft-

ware artifacts like files, classes, or methods for the case of
software archives. In the visualization we use a total order
derived from a hierarchy stemming from the application
domain, e.g. methods are contained in classes, classes are

1Evolution Patterns of Software



contained in files, files are contained in directories, and di-
rectories are contained in other directories.

1.2 Visualizing Association Rules
To detect relations between items we first look at how of-
ten two items have been changed together, i.e. how often
have they been checked into the software archive at the
same time. As a result, we obtain a table S : I × I → N

of change counts where I is the set of items.
This table can be read as follows: Item i and item j have

been changed together Si,j times. We call the matrix S the
support matrix as it indicates how much evidence is there
for each dependency. In particular, Si,i is the total number
of times item i was changed.

Next we compute the strength of each dependency, i.e.
the number of changes of a pair of items relative to the
number of changes of a single item. As a result we get
the confidence matrix C: Ci,j =

Si,j

Si,i
. Given a support

matrix S, we can easily compute C by dividing every row
by its element on the diagonal. In contrast to S, C is not
symmetric.

Figure 1.2: Pixelmap of the confidence matrix of
MOZILLA

The pixelmap in Figure 1.2 shows the associations of
the files in the /browser subdirectory of the CVS archive
of the MOZILLA project. As the files are ordered hierarchi-
cally one can see that files which are next to each other, i.e.
those that are in the same part of the hierarchy, are stronger
related than others. Thus clusters typically extend along
the diagonal of the pixelmap and very much correspond to
the hierarchical structure of the system.

Software developers are mainly interested in the out-
liers, i.e. those pixels representing couplings between
files in different directories. This kind of coupling, we
call it evolutionary coupling, is based on the simultaneous
changes of files rather than on one referencing the other.
Outliers can be a sign of aspects orthogonal to the system

hierarchy, but also a sign of a bad system architecture. In
other words, if in the pixel map we do not find rectangular
areas nicely aligned along the diagonal, then it might be a
good idea to restructure the system.

The 3D bar chart shown at the corner of the pixelmap is
a zoom of any part of the map and illustrates both support
(height of the bar) and confidence (color of the bar) at the
same time.

1.3 Visualizing Sequence Rules
Next, we would like to know in what temporal order
changes typically occur. To this end we compute and vi-
sualize sequence rules. Both the antecedent and the con-
sequent of a sequence rule are sequences of items. This
gives the antecedent and consequent a time component.

Figure 1.3: Parallel Coordinate View of MOZILLA
For example the sequence rule a1 → a2 → a3 ⇒ b1 →

b2 means that if a1 is changed before or at the same time
as a2 and a2 before or at the same time as a3, then it is
likely that some time later b1 and simultaneously or later
b2 will be changed. Figure 1.3 shows a parallel coordinate
view of the /browser directory. Every sequence rule is
displayed by connecting the node in the n-th column rep-
resenting the n-th item in the sequence with the node in
the n + 1-th column representing the n + 1-th item. The
color of the nodes indicates the weighted sum of the sup-
port values of the subsequences ending at this node of all
rules which share this node, while the color of the edges in-
dicates the weighted sum of the confidences. As the nodes
are ordered with respect to the hierarchical order of the
items, we see multiple clusters consisting of many edges
which only relate items in the same subdirectory. We also
see that the files base/content/browser.js and
base/content/browser.xul are related in a very



interesting way to almost all Javascript respectively XUL
files: they are often changed after one of these other files
has been changed.

In contrast to the parallel coordinate view in which one
edge can belong to multiple rules, the decision tree visual-
ization (see the bottom right corner of Figure 1.1) allows
to have a deeper look at the single rules. Due to the color
coding it is easily possible to find strong rules. Further-
more, one can see the structure of the rules, e.g. the length
of the antecedents and consequents of the rule set, or the
number of consequents for one given antecedent.

Bibliography
[1] R. Agrawal, T. Imielinski, and A. Swami. Min-

ing association rules between sets of items in large

databases. In Proceedings of the ACM SIGMOD Con-
ference on Management of Data. 1993.

[2] R. Agrawal and R. Srikant. Mining sequential pat-
terns. In Eleventh International Conference on Data
Engineering.

[3] R. Conradi and B. Westfechtel. Version Models for
Software Configuration Management. ACM Comput-
ing Surveys, 30(2), 1998.

[4] T. Zimmermann, S. Diehl, and A. Zeller. How history
justifies system architecture (or not). In Proc. Interna-
tional Workshop on Principles of Software Evolution
(IWPSE 2003), 2003.

[5] T. Zimmermann, P. Weißgerber, S. Diehl, and
A. Zeller. Mining version histories to guide software
changes. In Proceedings of International Conference
on Software Engineering ICSE 2004, 2004.


