
Programmanalyse

20 Experimental Program Analysis
Holger Cleve
Andreas Zeller
Lehrstuhl für Softwaretechnik, Universität des Saarlandes, Saarbrücken, Germany
{cleve,zeller}@cs.uni-sb.de

Abstract

Program analysis long has been understood as the analysis
of source code alone. In the last years, researchers have
also begun to exploit tests and test results. But what hap-
pens if the analysis process itself drives the test, running
actual experiments with the analyzed program? This po-
sition paper explores some of the possibilities that arise.
As a first proof of concept, our AskIgor web service auto-
matically isolates cause-effect chains for given failures—
without any source code: “Initially, GCC was invoked with
a C program to be compiled. This program contained an
addition of 1.0; this caused an addition operator in the in-
termediate RTL representation; this caused a cycle in the
RTL tree—and this caused GCC to crash.”

20.1 Reasoning about Programs

When programmers attempt to understand a program, they
use a wide variety of techniques to gather knowledge:

• At the core of things lies deduction—reasoning from
the abstract program code to what can happen in a
concrete program run. Typical deduction techniques
include static analysis and verification.

• Deduction, by nature, does not take concrete facts
into account—that is, facts from concrete program
runs. These are extracted by observation, as exem-
plified in classical debugging tools.

• If a program is executed multiple times—in a test
suite, for instance—one can attempt to induce ab-
stractions from the concrete runs. Techniques that
exploit induction are dynamic invariants (= summa-
rizing multiple runs), or coverage metrics (= finding
code that is executed in failing runs only)

• As part of the understanding process, programmers
also experiment with the program in question—by
generating and controlling multiple runs designed to
support or refute hypotheses about the program. Ex-
perimentation is hardly ever found in tools.

As sketched in Figure 20.1, these reasoning techniques
form a hierarchy—for instance, induction is not possible
without observation, and each technique can put to use any
static knowledge as deduced from the code.

Figure 20.1: Program analysis: A hierarchy

20.2 Finding Causes
The one reasoning technique that makes use of all others is
experimentation—the only one that can find out the cause
of some effect. In fact, to prove causality, one needs two
experiments: One where both cause and effect occur, and
one where neither occur (with everything else unchanged,
the cause preceding the effect, and both cause and effect
being minimal). This is the way that experimental science
finds the causes for natural phenomena.

Experimentation is the classical technique for debug-
ging: If we want to know whether some variable x is the
cause for some failure, we need to find an alternate value
for x where the cause does not occur. To find such a value,
and to know that changing x, instead of, say, y, is the great
challenge in debugging a program—or, more generally, in
understanding the cause of some effect.

One possible source for alternate values are alternate
runs—that is, runs where the failure does not occur. Let us
assume we have two runs: one run A where some effect
occurs, and one run B where it does not. Let us further
assume we interrupt program execution at some common
point in the source code. If we now transfer the entire pro-
gram state from A to B and resume execution, A’s effect
should occur in B, too. In fact, assuming deterministic ex-
ecution and perfect transfer, B should behave exactly as A.

But what happens if we transfer only part of the state
from A to B? This is an experiment whose outcome can
hardly be predicted. For one thing, we would probably end
up in an inconsistent state; resuming execution would lead



nowhere. However, if B now fails, one might argue that
the part of the state just transferred was indeed the cause
for the given effect. Using a simple strategy, this process
can be repeated until the cause is narrowed down to some
minimal difference between the two program states (Fig-
ure 20.2)—for instance, one pointer to the wrong element.
All one needs is an automated test that checks whether the
behavior of the modified run B is now A’s (= the part trans-
ferred caused the effect) , still B’s (= the part transferred
does not cause the effect), or something different.

Figure 20.2: The process in a nutshell
Applying this technique at various points during the

program execution eventually reveals the cause-effect
chain from input to outcome—in the case of program fail-
ures, a short and concise diagnosis about how the failure
came to be [1].

20.3 A Debugging Server
As a proof-of concept. we have built a debugging server
called AskIgor (“Ask Igor”)—a service that tells you why
your program fails:
Submit a Program. You have a program that shows some

repeatable, non-intended behaviour—for instance,
the GNU compiler (GCC) crashing on some input.
You call up the AskIgor Web site and submit the
cc1 executable—the program that crashes. You also
specify two invocations: one where the program
fails, and one where it passes.

Read the Diagnosis. AskIgor presents the diagnosis on its
Web page (Figure 20.3). The diagnosis takes the
form of a cause-effect chain: First, this variable had
this value, therefore, that variable got that value, and
so on—until the program state causes the behaviour
in question.
In our GCC example, the two inputs differ by the
string “ + 1.0” in the code (Step 1); this causes a
PLUS operator in the intermediate RTL representa-
tion (Step 2: a new RTL node); this causes a cycle in
the RTL tree (Step 3: link points back to itself)—and
this cycle causes the compiler to crash (Step 4).

Fix the Bug. In order to fix the program, one must break
the cause-effect chain—that is, ensure that at least

one of the failure-inducing variable values no longer
occurs. This is done by distinguishing intended
from non-intended states—a decision left to you.
In our case, the non-intended program state is the cy-
cle in the RTL tree. To find out how this state came
to be, you can have AskIgor compute the cause-
effect chain for the respective subsequence of the
execution (“How did this happen?”).

Figure 20.3: The AskIgor debugging server
The entire diagnosis is obtained by experimentation
alone—no source code is required, and no abstraction from
source code takes place.

20.4 Perspectives
Automated program analysis is much more than just an-
alyzing code. In this paper, we show that automated ex-
perimentation opens several new perspectives for program
analysis: Armed with just an automated test, one can auto-
matically narrow down the causes of specific effects. All
this is enabled by the wealth of computing power given to
us; yet, we have only begun to combine the different rea-
soning techniques. This is a great time for investigation
and cooperation.

More information about AskIgor and related work can
be found on our web site

http://www.st.cs.uni-sb.de/dd/

Bibliography
[1] Andreas Zeller. Isolating cause-effect chains from

computer programs. In Proc. ACM SIGSOFT Interna-
tional Symposium on the Foundations of Software En-
gineering (FSE), pages 1–10, Charleston, South Car-
olina, November 2002.


