
3 M-Track: A Metric Tool Framework for Monitoring the Evolution of
Object-Oriented Systems
Dharmalingam Ganesan
Jean-François Girard
Fraunhofer Institute for Experimental Software Engineering Sauerwiesen 6, 67661 Kaiserslautern, Germany
{ganesan,girard}@iese.fraunhofer.de

Abstract

This article reports about M-Track, a metric tool frame-
work for tracking the evolution of Object-Oriented (OO)
systems. It tracks the evolution using metrics reflecting
cohesion, coupling, inheritance, and size. M-Track was
applied for analyzing the evolution of a product family of
systems in the domain of stock market.

3.1 Introduction

Maintaining the existing software effectively is an impor-
tant activity for any organizations that develop systems that
heavily depend on software. As software systems become
older, changeability, understandability and testability start
decreasing unless maintainers take active measures to pre-
vent it.

One promising approach to control the maintenance of
legacy OO software system is monitoring its evolution. It
is well known that systems that adhere to the principles
of low-coupling and high-cohesion are easier to maintain.
But due to time to market pressure, these principles are
often not followed, decreasing the maintainability of the
system. On the other hand, without tools practitioners
often only have a vague feeling about the degradation of
coupling and cohesion between previous two releases. M-
Track helps addressing this problem.

3.2 Applying M-Track
We use M-track’s metrics to focus the attention of develop-
ers, designers and managers on the classes1 with extreme
metric values and extreme value changes. The idea is that
such classes are more likely to cause problems than other.
Many coupling and cohesion metrics have been proposed
for OO systems in the literature. Many of them capture the
same underlying concepts with more or less success de-
pending on the system and its context. Because analyzing
many partially redundant metrics requires too much effort
from experts we select a subset of the available metrics.
We used principal component analysis [Dun89] to select
the subset of metrics that capture most of the underlying
concepts.

3.3 Goals & Design of the M-Track Frame-
work

The following are the major goals that drive us to the de-
sign the M-Track framework and the solutions we have se-
lected.

• OO language Independent: The goal is to minimize
the modification effort to apply M-track to a differ-
ent oo language.
This goal is achieved by decoupling the fact ex-
traction from the metrics computation and by using
a different fact extractor for each language. Each

1The metrics can also be applied at higher level of abstraction like namespace or packages.



fact extractor produces a standard fact representa-
tion (RSF) from which the metrics are computed.

• Extendable : M-Track should be extendable in or-
der to introduce new metrics easily and also be able
to customize the evolution analysis to support the
needs of the analyst. We made M-Track easier to ex-
tend by separating the infrastructure needed by mul-
tiple metrics and by putting the specific part of each
metric in its own module.

• Efficient and Scalable: The main target of M-Track
is analyzing the evolution of large industrial sys-
tems. There scalability is the main concern.
To achieve an efficient and scalable implementation,
we applied three strategies. Firstly, we identified in-
termediate results needed by multiple metrics and
made sure that they would be computed only once.
Secondly, we preprocessed the relations in the fact
based, so that indirect relations could be access di-
rectly. Thirdly we optimized the infrastructure to
query the fact base.

• Portable: To offer short feedback cycle on the evolu-
tion and avoid delay, M-Track should run where the
code is produced. Since different industry partners
use different platform M-Track should be portable.
To achieve this portability we implemented M-Track
in Perl.

• Applicable to different level of granularity: In large
industrial systems, analyzing coupling and cohesion
metrics at different levels of abstraction helps to get
a high-level overview, then to focus on the details of
extreme cases.
To support this analysis, we defined hierarchical ver-
sion of the class metrics.

M-Track computes and visualizes OO metrics with the fol-
lowing steps.

1. Extract the containment information about files2,
classes and method as well the relations among them
for the current and previous version of the system;
then store these facts into RSF files.

2. Compute metric for both versions of the system.
3. Count the number of lines added, changed and

deleted for each file appearing in both systems.
4. Prepare evolution report combining the metrics and

the code change. Export the results as CSV format
from which Microsoft Excel generate charts to pro-
vide an overview for the people analyzing the evo-
lution.

3.4 Case Study and Lessons Learned
We applied M-Track to monitor the evolution of a prod-
uct family from stock market domain implemented in Java
[GVG04]. From the time where we started applying M-
Track, we introduced new metrics and refined existing
metrics to apply them at the package level. Our experience
shows that new metrics can be easily introduced. Further-
more, metrics computation takes only few seconds for sys-
tems that contains more than 300 Kloc of code and with
around 2000 classes in it.

One key lesson learned during this case study is that it
is important to keep the presentation of the results flexible.
As the developers, designers, and managers of a system
perform multiple workshops using the metrics, they dis-
cover new ways to analyze the results. It is important to
quickly adapt the reports and the visualization of the re-
sults to make the workshops most effective.

3.5 Conclusion and Future Work
This paper reports on a tool framework called M-Track,
for monitoring the evolution of object-oriented systems.
M-Track is customizable to the interest of industry part-
ners for monitoring the evolution. This customizability
was achieved by computing the metrics from a language-
independent intermediate model, decoupling metrics com-
putation from the metrics visualization, and also by im-
plementing the entire framework in a portable language
(Perl). Scalability is achieved by taking advantage of the
commonality among the definition of the metrics itself.
This work will be extended in three directions in future.

1. Extending the M-Track to monitor dynamic aspects
of the system.

2. Identifying relationships between static and dy-
namic measures.

3. Choosing an appropriate visualization approach for
doing useful analysis on the static and dynamic mea-
sures at different level of abstraction.

References
[Dun89] G.Dunteman, "‘Principal Component Analy-

sis"’, Sage Publication, 1989.
[GVG04] J.Girard, M.Verlage and D.Ganesan. "‘Moni-

toring the Evolution of an OO system with Metrics:
an Experience from the Stock Market Software Do-
main"’, Submitted for publication

2For different languages higher abstraction are also captured (e.g. packages for Java, namespace for C++).


