
6 E-CARES research project: Interactive, stakeholder-tailored re-engineering
Simon Giesecke
Dept. of Computer Science III, RWTH Aachen University, 52056 Aachen, Germany
giesecke@i3.informatik.rwth-aachen.de

André Marburger
Dept. of Computer Science III, RWTH Aachen University, 52056 Aachen, Germany
marand@cs.rwth-aachen.de

6.1 Introduction
The E-CARES project, which was initiated in 1999, is
committed to researching reverse and re-engineering ap-
proaches of telecommunications software systems ba-
sed on a graph transformation infrastructure. Ericsson’s
AXE10 mobile-services switching center serves as a ca-
se study during the project. The progress of the E-CARES
research project has been presented to this forum in the
previous years. In this paper, we first briefly present the
current status of the project (Section 6.2), in particular the
developments in the last two years. Afterwards, we point to
several ideas for future directions of the project in Section
6.3, particularly the use of reverse engineering repositories
for communication, explorative re-engineering, and im-
proved interoperability of reverse and re-engineering tool
suites.

6.2 Current state of the project
First results from state machine extraction, which was pro-
posed in [5], have been obtained by analyzing more than
two million lines of PLEX code spread over more than
a hundred compilation units (blocks). These results show
that certain assumptions regarding the structure of the state
machines are often violated, so that we had to partly revise
our extraction algorithm.

Further progress has been achieved concerning static
link chain analysis exploiting combinations of static and
dynamic analyses, as well as visualizing signal traces [6].

In the beginning of the E-CARES project, only the
PLEX programming language was supported. In the mean-
time, support for the C programming language was added.
As part of the process of adding C support, the whole pro-
totype was restructured, so that it is now possible to sup-
port a variety of languages with little effort. If one accepts

that language-specific features will be neglected, it is pos-
sible to add support for a new language without changing
the underlying graph schema, as long as it adheres to an
imperative paradigm. It is then only necessary to provide a
parser generating compatible output.

In the near future, Ericsson’s experts themselves will be
able to use and evaluate the tool at their site. We expect im-
proved feedback on the adequacy of the features provided
by the E-CARES prototype.

6.3 Future directions
It would be desirable to complete the existing reverse en-
gineering tool suite towards a re-engineering tool suite, as
already planned in the starting phase of E-CARES. Ho-
wever, in order to gain new insights into the problems of
re-engineering, an approach is taken that is in some way
substantially different from the numerous previous approa-
ches. Being built by means of the high-level graph trans-
formation language PROGRES [7], the existing prototype
stands out from the majority of reverse engineering tools
in the dimension of the underlying specification language.
It is interesting in itself to investigate the advantages and
disadvantages of this approach when extending the tools
towards re-engineering support. Other specifics of the in-
tended approach are presented below.

Communication through reverse engineering tools.
There are approaches to software architecture focusing on
the use of architectural descriptions as a means of com-
munication between different stake-holders [2]. Different
stake-holders have differing background knowledge, and
different interests in the software system and its descrip-
tion documents. Similarly, the descriptions of a software
system regained by reverse engineering techniques can be
used for communication. Reverse engineered descriptions



are commonly not at a genuine architectural level. In many
organizational contexts, however, they might be the only
descriptions that are apt to be used, since original architec-
tural descriptions might not be available at all or too out-
dated to be useful. Communication through these descrip-
tions might be realized with less intrusion to an organiza-
tion’s processes than that caused by direct migration to an
architecture-centered process. Thus, this approach might
have more potential for real impact on industrial practice.

One possible usage scenario of communication through
reverse engineering tools involves testers and system ar-
chitects as stake-holders. Testers are able to provide typical
signal traces, and may use the reverse engineering system
themselves to visualize the traces in the context of the ac-
tual system structure. System architects may use these tra-
ces for identifying communication hot spots, which may
help in deciding where to split a subsystem, for example.
If this kind of information is placed in the reverse engi-
neering repository, it may be easily used by all relevant
stake-holders.

Interactive, explorative re-engineering. Based on our
reverse engineering tool prototype, we plan to investiga-
te methods for interactive and explorative re-engineering
in the domain of telecommunications systems. It is diffi-
cult and not sustainable to provide a tool pursuing a fixed
re-engineering method, which can be applied to a softwa-
re system once. Instead, small re-engineering steps may be
performed throughout time. These steps may correspond to
recurring tasks, but probably there will be substantial va-
riations in the experts’ requirements. Therefore, we want
to give domain experts a tool at hand, using which they
can create re-engineering methods tailored for specific si-
tuations. These may not apply to the system as a whole, but
to multiple parts of the system. Thus, it is desirable that a
re-engineering method may be recorded using one exam-
ple, reworked into a general set of transformation rules and
replayed at other parts of the system. It will have to be ex-
amined how a specialization of the PROGRES language, a
specific method of use of PROGRES, or a language built
on top of PROGRES will be helpful in guiding this pro-
cess. In the latter case, atomic PROGRES transformations
must be identified. It is obvious that the less effort is put in-
to manual reworking, the less general the resulting method
will be. Here, it is interesting to find a balance which ma-
kes it possible for domain engineers to use the tool after an
acceptably short learning period, and which is expressive
enough to be of sustainable utility.

An explorative approach to re-engineering has been ta-
ken by Jahnke et al. [4]. However, their approach is con-
cerned with database re-engineering, which is related to,
but substantially different from re-engineering software,
let alone process-centered software systems. They concen-
trate on the integration of external changes in the subject
system. On the other hand, we want to consider the ex-
ploration of different re-engineering approaches to a given
subject system.

Re-engineering frameworks interoperability. In order
to reduce the tendency of re-implementation of functional-
ly equivalent components of re-engineering frameworks,
interoperability between different frameworks should be
improved [1]. Such efforts have already been pursued in
the re-engineering community (e.g. [3]). The use of a com-
mon repository interchange format, like GXL [8], provides
a starting point for such work, but is not sufficient for most
uses. For example, a query language like GReQL or Grok
[3] would be a useful facility in the context of E-CARES.
The PROGRES language could be seen as a query lan-
guage as well, but we consider it too generic and complex
to be used by a re-engineer. On the other hand, other re-
engineering frameworks (e.g. the GUPRO project) could
benefit from the interactive visualization and processing
framework provided by the E-CARES prototype. It should
be possible to exchange parsers between the frameworks,
which requires not only a common interchange format, but
also a common ground of its semantics and pragmatics. In-
tegration of a language like C++ into the E-CARES graph
schema would be feasible, but writing an adequate parser
would require a major effort.

Acknowledgments
The work presented here has been generously supported in
part by Ericsson Eurolab Deutschland GmbH (EED) and
the Deutsche Forschungsgemeinschaft (GK 643).

Literaturverzeichnis
[1] S. Ducasse and S. Tichelaar. Dimensions of reenginee-

ring environment infrastructures. Journal of Software
Maintenance, 15(5):345–373, 2003.

[2] Hasso-Plattner-Institut Potsdam. Initiative
"Kommunikation in der Software-Entwicklung".
http://fmc.hpi.uni-potsdam.de/
index.php?cat=research&subcat=
KommSE/overview-german. visited 2004-
03-23.

[3] R. C. Holt, A. Winter, and J. Wu. Towards a
Common Query Language for Reverse Engineering.
Fachberichte Informatik 8–2002, Universität Koblenz-
Landau, Universität Koblenz-Landau, Institut für In-
formatik, Rheinau 1, D-56075 Koblenz, 2002.

[4] J. H. Jahnke, W. Schäfer, J. P. Wadsack, and A. Zün-
dorf. Supporting iterations in exploratory databa-
se reengineering processes. Sci. Comput. Program.,
45(2-3):99–136, 2002.

[5] A. Marburger and D. Herzberg. E-CARES Research
Project: Extraction of State Machines from PLEX Co-
de. In Proc. 4th Workshop Software Reengineering,
pages 21–23. Fachberichte Informatik Universität Ko-
blenz: Koblenz, Germany, 2002.

[6] A. Marburger and B. Westfechtel. Tools for Under-
standing the Behavior of Telecommunication Systems.
In Proc. 25th Intl. Conference on Software Enginee-
ring (ICSE 2003), pages 430–441, Portland, Oregon,
USA, May 2003. IEEE Computer Society: Los Ala-
mitos CA, USA.



[7] A. Schürr. Programmed graph replacement systems.
In G. Rozenberg, editor, Handbook of Graph Gram-
mars and Computing by Graph Transformation. Vol. I:
Foundations, chapter 7, pages 479–546. World Scien-
tific, 1997.

[8] A. Winter, B. Kullbach, and V. Riediger. An overview
of the GXL graph exchange language. In S. Diehl,
editor, Software Visualization: International Seminar,
number 2269 in Lecture Notes in Computer Science,
pages 324–. Springer, 2002.


