
Programmvisualiserung und -analyse

27 JTransform
A Tool for Source Code Analysis
Holger Eichelberger
Jürgen Wolff von Gudenberg
Institut für Informatik, Am Hubland, 97074 Würzburg, Germany
{eichelberger,wolff}@informatik.uni-wuerzburg.de

Abstract
Code transformation and analysis tools provide support for
software engineering tasks such as style checking, testing,
calculating software metrics as well as reverse- and re-
engineering. In a reverse step information is picked from
a source text in order to facilitate its comprehension, its
visualization or the check of agreed standards concerning
coding quality or layout.
In this short paper (see [3] for details) we describe JTrans-
form, a general Java source code processing and transfor-
mation framework. It consists out of a Java parser gener-
ating a configurable parse tree and various visitors (trans-
formers, tree evaluators) which produce different kind of
outputs.

27.1 Architecture
The main design goals for JTransform have been ex-
tendibility by subclassing and plugins, easy configuration
of applications and ease of use. Therefore we extensively
used design patterns like visitor, factory methods, abstract
factory, composite or strategy.

The tool is split into two configurable phases, the front
end and the back end.

27.1.1 Front End
A JavaCUP generated Java parser builds the parse tree.
The parser is configurable in order to generate parse tree
nodes containing different amounts of information. There-
fore the parse tree is generated by a factory which consists
of a set of factory methods. As default the node’s syntactic
structure and its source code position is registered, type in-
formation can be added. During the static type resolution
information from imported classes, not part of the source
code files may be collected.

27.1.2 Back End
The parse tree is then traversed by at least one visitor
to transform the tree itself performing syntactical checks
or static type resolution, or to produce the application-
specific output. Generally, different back ends need dif-
ferent information stored in the parse tree nodes. The col-
lection of method calls and the detection of general de-

pendencies between classes , such as a cast expression can
optionally be performed while calculating the static type
references.

27.2 Configuration
In order to infer additional information, usually the nodes
are subclassed and a specialized visitor, which controls the
information inference mechanism is implemented. In or-
der to tell JTransform to use the new nodes, a specialized
nodes factory has to be implemented. Interpretation and
implementation of options is possible.

All back ends should extend one class that provides
configuration methods for redirection of input and output.
Multiple back ends may be chained.

As an example of dynamic configuration by compo-
nents the source code checking application implements
different source code checks, each as a single component.

Furthermore, an XML configuration or project file con-
tains a section of global features which are applied to all
files, and at least one section which describes local features
applied to a set of files specified in that section.

27.3 Applications
27.3.1 Visualisation by UML Diagrams
A visitor transforms the program into UMLscript that is
input for the diagram drawing framework Sugibib [4]

27.3.2 Programming Conventions
Source code formatting and naming conventions are
checked whether they conform to commonly agreed stan-
dards [2, 7].

Various visitors performing static source code analysis
are applied in order to highlight dangerous code that may
be the source for tricky errors. Take the facts that the state-
ment following an if or for is not a block, or that an iterator
changes accidentally the underlying collection, as exam-
ples.

27.3.3 Forbidden Classes and Packages
In an educational environment or for security reasons some
classes or packages may be forbidden. The Java access
controller restricts the usage of library classes by defining



a policy file.this mechanism is extended with JTransform.
As an example, dynamic loading of classes and reflection
can be forbidden, if user code is not allowed to make refer-
ences to the ClassLoader and its subclasses, the class
Class and all classes in java.lang.reflect. This
rule is simple but very restrictive, often it is sufficient to
declare certain methods of ClassLoader as forbidden
in the user code.

27.3.4 Refactoring
A simple application of JTransform is to change class
names, method names, parameter names, package names,
move classes between packages and move entire packages
and, of course, to correct all references to these classes
and packages in the rest of the source code. As a further
application, the changes and incompatibilities which result
from deleting an attribute or a method or when changing
the type of an attribute or parts of the signature of a method
can be displayed; of course the changes can be executed
but this usually requires further work by the programmer.

27.3.5 Clone Detection
Based on the information provided by the parse tree we
implemented an algorithm that detects clones in the source
code [8]. It is an adaption of the algorithm for finding fre-
quent itemsets.

27.3.6 Metrics
Different kinds of primitive source code metrics like the
number of packages, the number of inner classes or the
amount of comment in the source can be calculated. Ad-
ditionally metrics like reuse ratio or sophisticated metrics
like those proposed in [1, 5] can be calculated as well as
experimental metrics.

27.4 Conclusion
We have described the architecture and the applications of
JTransform, a general-purpose Java source code transfor-
mation framework. JTransform has been designed accord-
ing to usual object-oriented design principles, well known

design patterns have been used. It consists of a front end
producing an annotated parse tree and various back ends.

Custom back end applications can simply be plugged
in by implementing a tree visitor. An alternative architec-
ture of the tool can transform the parse tree to an XML
document [3]. Thence, user applications may use an ap-
propriate XML format such as XSLT/XPath as a general
purpose query and transformation language. The stability
of JTransform itself was validated by a test suite based on
[6], the source code of the Java library and different Java
online courses.

Bibliography
[1] Chidamber S, Kemerer C. A Metrics Suite for Ob-

ject Oriented Design IEEE Transactions on Software
Engineering 20(6):476–493.

[2] Code Conventions for the JavaTM Programming
Language
http://java.sun.com/docs/codeconv/
html/CodeConvTOC.doc.html

[3] Eichelberger H, Wolff von Gudenberg J. Object-
oriented Processing of Java Source Code Software
Practice and Experience, 2004, to appear

[4] Eichelberger H, Wolff von Gudenberg J. On the Visu-
alization of Java Programs, In LNCS 2269: Software
Visualization S. Diehl (ed.) Springer: Berlin, 2002;
295–306

[5] Genero M, Piattini M, Calero C. Early measures for
UML class Diagrams L’Objet 2000 6(4):29–35.

[6] Jacks (Jacks is an Automated Compiler Killing
Suite)
http://www-124.ibm.com/
developerworks/oss/cvs/jikes/
~checkout~/jacks/jacks.html

[7] D. Lea Draft Java Coding Standard
g.oswego.edu/dl/html/javaCodingStd.
html

[8] V. Wahler Erkennung von Klonen in Java-
Programmen mit Data-Mining-Techniken, Institut
f. Informatik, Universität Würzburg, Diplomarbeit,
2003


