
32 On Analyzing the Interfaces of Components
Jens Knodel
Fraunhofer Institute for Experimental Software Engineering (IESE), Sauerwiesen 6,
D-67661 Kaiserslautern, Germany
knodel@iese.fraunhofer.de

Abstract
Reusing existing software components can significantly
reduce the effort needed for the development of new pro-
ducts. In order to enable reuse, existing conceptual com-
ponents have to be identified, well documented and in so-
me cases migrated into physical component. This paper
presents an approach that helps when migrating parts of
existing software systems into components to be reused in
other projects.
Keywords: component, interfaces, request-driven reverse

architecting, reverse engineering, software architec-
ture

32.1 Introduction
Reuse is a promising solution for challenges for software-
developing organizations and their need for reducing cost,
effort and time-to-market, the increasing complexity and
size of the software systems, and increasing requests for
high-quality software and individually customized pro-
ducts for each customer.

Documented interfaces are one of the prerequisites for
effective reuse of components. Reuse works when the de-
velopers know which functionality is provided by a com-
ponent and how to access the functionality implemented
in such a component. Components in the context of inter-
face analysis are collections of source code entities (e.g.,
files, groups of logically related routines, single or groups
of classes or packages, or even whole subsystems). The
interface analysis technique can be applied for one of the
following purposes:

• Reduction of the complexity of given components
with respect to the number of offered routines by mi-
nimizing the provided interfaces to only the actually
used interfaces when to facilitate reuse

• Documentation of source code spots in usage lists
where to change accesses to a component when
migrating the software system towards component-
based development.

• Extension of architectural descriptions (e.g., the mo-
dule and/or the code view, see [1]) by explicit nota-
tion of the provided functionality of a component.

• Migration of a group of entities towards an encapsu-
lated component with explicit boundaries.

Our interface analysis technique reveals the connecti-
ons of the subject component to the rest of the software
system, or if it should be migrated into a separate compo-
nent in future, it documents the spots to be changed and
how the future component is embodied in the system. To
achieve these goals we apply reverse engineering techni-

ques in form of the interface analysis as described in the
next sections.

32.2 Interfaces Analysis
The interface analysis technique is part of an analysis ca-
talogue developed at Fraunhofer IESE. All analyses of this
catalogue can be considered as request-driven reverse ar-
chitecting analyses. Each analysis in this catalogue opera-
tes on a fact base produced by fact extraction from existing
artifacts (e.g., architecture descriptions, the source code).
An analysis is always initiated by a concrete request that
delivers the results on demand. The results of an analysis
are (architectural) views or subset of views. Such a view
contains only selected aspects of the systems that are of
interest in the context of the given request.

A prerequisite for the interface analysis is that the fact
base contains interface related information (e.g., calls or
method invocation of class methods, access to variables or
class members). Figure 32.1 shows the inputs to the inter-
face analysis, a component or a collection of entities that
should be migrated towards a component.

Abbildung 32.1: Interface Analysis
The inputs are then analyzed with respect to dependen-

cies of the component (or the collection of entities) to the
rest of software system whereby dependencies means for
instance data dependencies, import relations, inheritance,
or caller-callee dependencies. The resulting interface des-
criptions will be twofold:

• Required dependencies: the required dependencies
are entities that the component needs in order to
work properly. Usually a component communicates
with other components to accomplish its tasks. In
the migration context, it has to be decided whether
those required source code entities become part of
the to-be build component or they constitute a se-
parate component. For reusing of a component it
is important to know about such dependencies be-
forehand because they may influence the decision
whether to reuse the component or not.

• Provided dependencies: the provided dependencies
(or usage list) are the part of the given component



where the system accesses the component that is
where it needs some functionality implemented in
the component in order to work properly. There are
two options, on the hand we can only document
the currently used entities from the component (i.e.,
when changing the signature of a routine, it is be-
neficial to locate each place where a call has to be
adjusted) and, on the other hand, we are able to do-
cument the complete interface offered to the outside
(i.e., when reusing the component in another con-
text, it is beneficial to know about the complete in-
terface). To document both is required when plan-
ning to achieve both goals.

An interface description usually contains a list of rou-
tines, global variables, and class members that can be ac-
cessed from the outside. Variables and class members may
lead to additional implementation effort for get and set ac-
cess that should be scheduled in the migration. The inter-
face description we produce includes the signature and the
return parameter of the specific routines as well as the lo-
cations of different usages and in which file they are imple-
mented. The description basically resolves the kind of de-
pendencies which is present for each instance (e.g., calls,
inheritance, data dependencies, imports, etc.), but it is pos-
sible to focus only on specific kinds of relations. Figu-
re 32.2 shows an example for such an interface description.

Abbildung 32.2: Interface Description Example
Tools automate the task of analyzing the interfaces by

querying the fact base. The queries can be parameterized
by the list of components (or the collections of entities)
for which the interfaces should be described. Single enti-
ties of a component will usually overlap in their interface
description or their usage list. For this reason, we can crea-
te a single description for the whole component that con-
tains no redundancies. These descriptions can be sorted by

different criteria (e.g., places of usages, name of routines,
classes, etc). The results of such an interface analysis can
now be utilized to achieve the different purposes mentio-
ned in the beginning.

32.3 Conclusion
The interface analysis documents the provided interfaces
and the actually used interfaces of source code entities.
This information can be used for the following purposes:

• Migrating collections of entities into an encapsula-
ted component.

• Reducing the broadness of provided interfaces to on-
ly the actual needed and therefore reducing the com-
plexity in terms of the size.

• Documenting the description and usage of entities in
an automated way.

The presented interface analysis technique helps to
counteract the degeneration of the interfaces. A more de-
tailed description of the approach and how it is embedded
in architectural design in a product family context can be
found at [2]. We applied the interface analysis successfully
in the context of two industrial case studies. Future work
will involve the application in further case studies and the
integration of the interface analysis together with other
analysis we provide in our catalogue of request-driven re-
verse architecting analyses.

32.4 Acknowledgement
This work is partially funded by the European Commissi-
on under EUREKA 2023/ITEA-ip00009 „FAct based Ma-
turity through Institutionalization Lessons-learned an In-
volved Exploitation of System-family engineering“ (FA-
MILIES).

32.5 References
[1] C. Hofmeister, R. Nord, D.: Applied Software Archi-

tecture, Addison-Wesley, 2000.
[2] J. Bayer, T. Forster, D. Ganesan, J.-F. Girard, I. John,

J. Knodel, R. Kolb, D. Muthig: Definition of Re-
ference Architectures based on Existing Systems,
Technical Report, Fraunhofer IESE, March 2004


