
28 Textual vs. Graphical Visualization of Fine-Grained Dependences
Extended Abstract
Jens Krinke
FernUniversität in Hagen
Jens.Krinke@FernUni-Hagen.de

28.1 Introduction
A slice extracts those statements from a program that po-
tentially have an influence onto a specific statement of in-
terest that is the slicing criterion. Slicing has found its
way into various applications. It is mostly used in the area
of software maintenance and reengineering, e.g. in testing,
impact analysis, and cohesion measurement.

One of the main slicing approaches uses reachability
analysis in program dependence graphs (PDGs). Program
dependence graphs mainly consist of nodes representing
the statements of a program, and control and data depen-
dence edges:

• Control dependence between two statement nodes
exists if one statement controls the execution of the
other (e.g. through if- or while-statements).

• Data dependence between two statement nodes ex-
ists if a definition of a variable at one statement
might reach the usage of the same variable at an-
other statement.

For the interprocedural variants IPDG and SDG the
graphs are extended with additional interprocedural edges
(which are not discussed here). The (backward) slice S(n)
of an IPDG at node n consists of all nodes on which n

(transitively) depends via an interprocedurally realizable
path.

The program dependence graph itself and the computed
slices within the program dependence graph are results that
should be presented to the user if not used in following
analyses. As graphical presentations are often more intu-
itive than textual ones, a graphical visualization of PDGs
is desirable.

28.2 Visualization of PDGs
Layout of graphs is a widely explored research field with
many general solutions available in graph drawing tools.
We evaluated some of these tools (daVinci, VCG and dot)
to lay out PDGs. Our experience with these tools to layout
PDGs has been disappointing. The resulting layouts were
visually appealing but unusable, as it was not possible to
comprehend the graph. The reason is that the viewer has
no cognitive mapping back to the source code, which is the
representation he is used to. The user expects a represen-
tation that is either similar to the abstract syntax tree (as a
presentation of the syntactical structure), or a control-flow-
graph like presentation.

Because this general approach to layout PDGs had
failed, a declarative approach has been implemented. It
is based on the following observations:

1. The control-dependence subgraph is similar to the
structure of the abstract syntax tree.

2. Most edges in a PDG are data dependence edges.
Usually, a node with a variable definition has more
than one outgoing data dependence edge.

The first observation leads to the requirement to have a
tree-like layout of the control dependence subgraph with
the additional requirement that the order of the nodes in a
hierarchy level should be the same as the order of the cor-
responding statements in the source code. The second ob-
servation leads to an approach where the data dependence
edges should be added to the resulting layout without mod-
ifying it. As most data dependence edges would now cross
large parts of the graph, a Manhattan layout is adequate.
This enables an orthogonal layout of edges with fixed start
and end points. This approach has been implemented in
a tool that visualizes system dependence graphs. Starting
from a graphical representation of the call graph, the user
can select procedures and visualize their PDGs. Through
selection of nodes, slices can be calculated and are visual-
ized through inverted nodes in the PDGs laid out.

Experience with the presented tool shows that the lay-
out is very comprehensible for medium sized procedures
and the user easily keeps a cognitive map from the struc-
ture of the graph to the source code and vice versa. This
mapping is supported by the possibility to switch between
a textual visualization of the source code and the graphical
layout of the current procedure. Sets of nodes marked in
the graph can be highlighted in the source code and marked
regions in the source code can be highlighted in the graph.
Together with additional navigational aids, it is easy to see
what statements influence which other statements and how.

However, experience has shown that the graphical vi-
sualization is still too complex. For larger procedures the
number of nodes and edges is too high, and it takes very
long to follow edges across multiple pages by scrolling.

The presented graphical visualization has been found
to be far too complex for large programs and non-intuitive
for visualization of slices. Therefore the graphical visu-
alization has been extended with a visualization in source
code. This causes a non-trivial projection of nodes onto
source code, because of the fine-grained structure of the
dependences between statements.



28.3 Visualization of Locality
Independent of visualization, one of the problems in un-
derstanding a slice is to decide why a specific statement is
included in that slice and how strong the influence of that
statement is onto the slicing criterion. A slice cannot an-
swer these questions as it does not contain any qualitative
information. Probably the most important attribute is lo-
cality. Users are more interested in facts that are near the
current point of interest than on those far away. A simple
but very useful aid is to provide the user with navigation
along the dependences: For a selected statement, show all
statements that are directly dependent (or vice versa).

A more general approach to accomplish locality in slic-
ing is to limit the length of a path between the criterion
and the reached statement. Using paths in program depen-
dence graphs has instead of paths in control flow graphs
has an advantage. A statement that has a direct influence
on the criterion will be reached by a path with length one,
independent of textual or control flow distance.

Distance-limited slices cannot simply be visualized
with the techniques presented in the previous section with-
out any modification. Another possibility is to indicate
the distances from the (slicing) criterion for any node in
the (possibly distance-limited) slice. The textual visual-
ization from the previous section is therefore modified not
only to highlight the nodes in the textual representation,
but also to give any source code fragment a color that rep-
resents the distance of the equivalent nodes to the crite-
rion. The slicing algorithm needs not to be changed in
order to accommodate the distance computation—it is suf-
ficient to remember the distance of a node during breadth-
first search.

28.4 Abstract Visualization
For large-scale program understanding the presented visu-
alization techniques are not very helpful. If an unknown
program is analyzed, the very detailed information of pro-
gram dependences and slices is overwhelming, and a much
less detailed information is needed. The user who tries to
understand the program will start with variables and proce-
dures and not with statements. To understand a previously
unknown program, it is helpful to identify the ‘hot’ proce-
dures and global variables—the procedures and variables
with the highest impact on the system.

This section will show how slicing and chopping can
help to visualize programs in a more abstract way, illus-
trating relations between variables or procedures. Chop-
ping reveals the statements involved in a transitive depen-
dence from one specific statement (the source criterion) to
another (the target criterion). A chop for a chopping crite-
rion (s, t) is the set of nodes that are part of an influence
of the (source) node s onto the (target) node t.

It is possible to define slices for variables or procedures
informally:

1. A (backward) slice for a criterion variable v is the
set of statements (or nodes in the PDG) which may
influence variable v at some point in the program.

2. A (backward) slice for a criterion procedure P is the
set of statements (or nodes in the PDG) which may
influence a statement of P .

These definitions can be adapted to the other slicing and
chopping variants, including the adaption of the needed
algorithms. It will not be presented here, as it is straight-
forward.

As previously noted, it is helpful to identify the ‘hot’
procedures and global variables. However, to identify
them, we have to measure the procedures’ and variables’
impact on the system. A simple measurement is to com-
pute slices for every procedure or global variable and
record the size of the computed slices. However, this might
be too simple. A slightly better approach is to compute
chops between the procedures or variables. A visualization
tool has been implemented that computes a n × n matrix
for n procedures or variables, where every element ni,j of
the matrix is the size of a chop from the procedure or vari-
able nj to ni. The matrix is painted using a color for every
entry, corresponding to the size—the bigger, the darker.
With this tool, it is easy to get an overall impression of
the software to analyze. Important procedures or global
variables can be identified on first sight and their relation-
ship can be studied. Doing this as a preparing stage aids
in later, more thorough investigations with traditional slic-
ing visualizations like the ones presented in the previous
sections.

28.5 Conclusions
Despite the widespread use of graphical visualization in
software maintenance and reverse engineering, our and
other’s experiences for graphical visualization of program
dependence and program slices are different. For tasks re-
lated to large-scale understanding graphical visualization
has proven to be successful. The main reason is that the
number of nodes (or objects) to be visualized is kept very
low by clustering techniques. Tasks related to understand-
ing dependences in detail (like program dependences and
slices) suffer from the sheer amount of data to be visual-
ized. The various experiences show that graphical visu-
alization has more disadvantages than advantages in this
area.

The visualization of slices in textual form has shown to
be much more effective, because the programmer is accus-
tomed to representations similar to source code. However,
slices are still hard to understand due to the loss of local-
ity. Distance-limited slicing and its visualization can help,
because it limits the distance of the influence to the current
point of interest. The visualization of the distance shows
immediately how important a statement is for the current
influence.

For large-scale program understanding none of the de-
tailed slicing visualizations are helpful. The presented ap-
proach to visualize the influence range of variables and
procedures by visualizing the size of chops can help the
user to identify “hot spots” of the program very fast.


