
Sprachen, Grammatiken und Transformationen

33 Evolution of Language Interpreters
Ralf Lämmel
Vrije Universiteit, De Boelelaan 1081a, NL-1081 HV Amsterdam
CWI, Kruislaan 413, NL-1098 SJ Amsterdam
ralf@cwi.nl

Keywords Operational Semantics, Evolution, Re-
Engineering, Program Transformation, Language
Interpreters, Language-Based Tools

Language-based tools involve some (ad-hoc) elements
of a language’s intended (say, formal) semantics. These
elements relate to the specific service provided by a tool.
For instance, a program analyser might implement a so-
called abstract interpretation; a transformation tool might
employ algebraic laws as well as typing and scoping rules;
a translator implements the syntax-to-syntax edge in the
commuting diagram with nodes for the two syntaxes and
the two semantics of the involved languages.

Type checkers and language interpreters can be seen as
prototypical examples of language-based tools. Such tools
implement the language semantics rather directly. The ex-
tensibility of such semantics-oriented programs (and the
underlying formal semantics descriptions) has received
ample attention in the programming-language community.
There exist highly advanced approaches to the reuse of lan-
guage descriptions or components thereof, e.g., monadic-
style semantics, action semantics, abstract state machines,
strategic programming, modular SOS, and modular at-
tribute grammars. This suggests that the domain of lan-
guage descriptions is suitable for studying evolution of
language-based tools in general.

We aim at a pragmatic, re-engineering-like approach to
the evolution of language-based tools. That is, we provide
a simple, transformation-based approach to the evolution
of language-based tools that are encoded in simple rule-
based notations. Our focus is on interpreters. We assume

that language interpreters (or other language-based tools)
are programmed in rule-based notations such as structural
operational semantics, definite clause grammars, attribute
grammars, conditional rewrite systems, or constructive al-
gebraic specifications. The evolution of an interpreter is
then represented by meta-programs on such rule-based ob-
ject programs, while relying on a suitably designed opera-
tor suite for evolutionary transformations.

We present a series of examples for interpreter evolu-
tion. Starting from a simple expression language, we go
through a development that touches upon pure and impure
extensions, higher-order functional, object-oriented lan-
guages, and aspect-oriented languages, as well as seman-
tics of different styles, i.e., small-step vs. big-step SOS.

Pointers
This approach is presented at some length in [1]. (An
early instance of evolutionary transformations for rule-
based programs is developed in the author’s PhD thesis.)
One specific proof-of-concept implementation of the ap-
proach is available as the Rule Evolution Kit [2].

Bibliography
[1] R. Lämmel. Evolution of Rule-Based Programs. Jour-

nal of Logic and Algebraic Programming, 73, 2004.
52 pages; Special Issue on Structural Operational Se-
mantics; To appear.

[2] The Rule Evolution Kit, version 0.77, 11 Feb. 2004.
http://www.cs.vu.nl/rek/.


