34 Two co-transformations of grammars and related transformation rules

Wolfgang Lohmann

University of Rostock, Albert-Einstein-Str. 21, D-18051 Rostock

wlohmann@informatik.uni-rostock.de

34.1 Introduction

Despite of their basic role in software development, gram-
mars are still often considered as static artifacts, used for
language definition or once prepared for tool construction.
Hence, there is insufficient support for working with gram-
mars as software artifacts themselves. However, grammars
are permanently changed, e.g. to debug them, to improve
languages, to create grammars for tools. In [1] the authors
demonstrate, how transformation tasks can be simplified,
when underlying grammars are tailored especially to sub-
tasks. The need for a discipline of grammar engineering
has been emphasized by [2].

In the following, we will describe two examples of co-
transformations. A co-transformation transforms mutually
dependent software artifacts of different kinds simultane-
ously, while the transformation is centred around a gram-
mar (or schema, API, or a similar structure) that is shared
among the artifacts [3]. We are interested in consequences
of grammar adaptations to transformations based on these
grammars, and investigate, if the transformation rules can
be migrated to work with the modified grammar.

34.2 Extending grammar rules

A slight change to a grammar by the insertion of a sin-
gle non-terminal can lead to corrupt transformation rules,
as these are based on the original grammar. While adapt-
ing the grammar information about the grammar changes
can be collected. It can then be used to derive a migration
of transformation rules by adapting the patterns which are
based on the abstract syntax of the grammar. Since pat-
terns are extended, it is necessary to define default values
for introduced positions. Additionally, changed semantics
has to be expressed with additional rules. The method is
described more detailed in [4].

The approach has been used to tackle the problem
of layout preservation in source-to-source transformations
like refactoring. Non-terminals for layout information
were introduced in the grammar at each terminal. The
rules, for example, those for specifying a refactoring, had
to be adapted to work with the extended abstract syntax.
For the transport of layout information, a heuristics has
been used.

Note, that the approach can also be used to simplify
patterns for rewriting rules. Several transformation tasks
need parts of the patterns only. The original grammar can
be considered to be the extended subgrammar for that pat-
tern. Thus, rules over the subgrammar can be migrated
to work on abstract syntax trees according to the original
grammar.

34.3 Semantics-preserving left recursion re-
moval

Several tools for source-to-source transformation are based
on top-down parsers. Top-down parsers are simple. Their
structure is similar to the grammar, and it is easy to add
semantics. However, they restrict the user to use gram-
mars without left recursion. Removing left recursion of
a given grammar often makes it unreadable, and prevents
a rewriter to concentrate on the original grammar. Addi-
tionally, the question arises, whether the tool implements
the semantics of the original language, if it is implemented
based on a different grammar than in the original language
definition. Moreover, existing implementations of seman-
tics for the original grammar cannot be reused directly. A
co-transformation on attribute grammars can help here.

A grammar and transformation rules on its abstract syn-
tax can be considered as attribute grammar. It is possible
to remove left recursion in the grammar and at the same
time migrate the semantic rules. In the case of S-attribute
grammars, each newly introduced non-terminal gets the
synthesized attributes of the original non-terminal as well
as inherited attributes of the same type. The computation
is redirected to the inherited attribute of the non-terminal
following the recursive one in the grammar rule. The e-
derivation causes a copy of the result computed so far to
the corresponding synthesized attribute, which are then
just copied upwards. Similarly, other types of attribute
grammars can be adapted, like I-attributed and multi-pass
attribute grammars. The approach is explained and justi-
fied in detail in [5].

Using the approach, it is possible to use small and
easy top-down based tools for simple maintenance task
with left recursion containing grammars recovered from
YACC specifications, as long as they do not contain e-
productions. The approach also contributes to simplifying
rewriting rules, since a programmer can continue to use
semantic rules on a better readable left recursive grammar.

34.4 Final remarks

The two given examples are grammar adaptations, where
much of necessary migrations of the related transformation
rules can be derived automatically. The general concept is
pictured in Fig. 34.1.

For a real support of grammar changes and related rules
there is still much work to be done.

The given grammar adaptations can be applied to make
writing transformations easier. The first helps in abstract-
ing away unnecessary complexity when rewriting. The
user can concentrate to specify the tasks while the au-
tomatic grammar adaptation and migration of rules takes
care of the ‘uninteresting parts.

Source

‘
|
‘

Grammar

Adaptation

Migration

Co-transformation

Y

Transformed
source

Figure 34.1: Co-transformation: grammars and rules

The second example enables the user to specify pro-
gram transformations based on a grammar containing left
recursion even if he uses top-down parsing technology.
Hence, he is freed from using more complex grammar re-
sulting from algorithm of left recursion removal. More-
over, it provides a method to reduce the distance of an orig-
inal grammar in a specification and some ’tool’-tailored
grammar necessary for technical reasons.

We are looking for more patterns, where a modifica-
tion of the grammar induces a change to transformation
rules over programs according to the grammar. A known
example is the transformation of attribute grammars to an
S-attribute grammar.

Acknowledgement

The work on automatic removal of left recursion while pre-
serving semantics profited from collaboration with Markus
Stoy during his diploma thesis.

Bibliography

[1] T.R. Dean, J.R. Cordy, A.J. Malton, and K.A. Schnei-
der. Agile Parsing in TXL. Journal of Automated Soft-
ware Engineering, 10(4):311-336, October 2003.

[2] P. Klint, R. Limmel, and C. Verhoef. Towards an en-
gineering discipline for grammarware. 32 pages, sub-
mitted for journal publication, August17 2003.

[3] Ralf Ldmmel. Transformations everywhere. Science
of Computer Programming, 2004. To appear; The
guest editor’s introduction to the SCP special issue on
program transformation.

[4] Wolfgang Lohmann and Giinter Riedewald. Towards
automatical migration of transformation rules after
grammar extension. In Proc. of 7th European Con-
ference on Software Maintenance and Reengineering
(CSMR’03), pages 30-39. IEEE Computer Society
Press, March 2003.

[5] Wolfgang Lohmann, Giinter Riedewald, and Markus
Stoy. Semantics-preserving migration of semantic
rules after left recursion removal in attribute gram-
mars. In Proc. of 4th Workshop on Language Descrip-
tions, Tools and Applications (LDTA 2004), 2004.

