
25 Recovering Design Elements in Large Software Systems
Jörg Niere
University of Siegen, Software Engineering Group
joerg.niereuni-siegen.de

Introduction. Reverse engineering large systems means
to be able to analyse programs with more than 100K lines
of code. Especially, recovering design elements means,
e.g. detecting classes, relations or design-patterns, or re-
covering the architecture of a program. All activities need
large analysis parts, because they nearly span over the
whole system and manifest themselves not only in small
parts.

In addition to the large analysis parts, design elements
are usually described on a high abstract level. For exam-
ple, design-pattern descriptions introduced by Gamma et
al. contain more parts written in prose than parts described
with diagrams. This makes them flexible for the applica-
tion in an actual system design, but hard to detect accord-
ing to of the large variety of implementation variants.



Current approaches of recovering design elements use
automatic analyses. On the one hand, approaches perform-
ing fine-grained analyses fail, because of the large system
size. On the other hand, approaches performing coarse-
grained analyses produce too many false-positives. In gen-
eral we have a trade-off between the granularity of the
analysis and the size of the system to be analysed.

Calibrating rule catalogs. Our approach to recover de-
sign elements is to use a rule catalog, which describes
the design elements in terms of graph rewrite rules [4].
The analysed source code is presented as an abstract syn-
tax graph or may be represented as any other kind, e.g.
control- or data-flow graphs.

The idea of our approach is that the rule catalog to anal-
yse the system contains only those rules that fit to the sys-
tem. In means of design patterns the rules describe only
the implementation variants included in the system and no
others. Therefore, our approach highly involves the re-
verse engineer in an anlysis process to calibrate the rule
catalog to his/her needs, cf. Figure 25.1. This allows for
performing fine-grained and coarse-grained analysis and
for letting the catalog as small as possible enabling analy-
sis of large systems.

Pattern
Rule

Editing

Pattern
Rule

Inference

Pattern Rule 
Credibility 
Adaptat i on

Initial
Pattern Rule 

Catalog

Source
Code

Adapted
Pattern Rule 

Catalog

Design 
Documents

Figure 25.1: Interactive Rule Catalog Calibration
The process starts with an initial catalog of rules, which

the reverse engineer may edit (Editing). In the Inference
step, the rules are automatically applied by an inference al-
gorithm, which produces meaningful results early and not
only after a complete analysis of the system. The reverse
engineer can interrupt the inference to inspect the results
produced so far.

Our approach supports the inspection of the reverse en-
gineer with accuracy values assigned to each result [5].
The accuracy values result from credibility values which
are attached to the rules. So far, the choice of the credibil-
ity values highly depends on the personal experience of the
reverse engineer. To overcome this limitation the process

includes the Credibility Adaption step, where the credibil-
ity values are automatically adapted based on changes of
accuracy values made by the reverse engineer. In addition
to changing accuracy values the reverse engineer may also
add hypotheses and let them validate in the inference step.
For more details see [1]

Practical experiences. The approach has been imple-
mented as plugins for the Fujaba Tool Suite and is avail-
able under www.fujaba.de. For each step in the process
exists a separate plugin in order to test different inference
or adaptation strategies.

The prototype has been used to analyse different sys-
tems. For example it has been used to detect design-
patterns in Java’s Abstract Windowing Toolkit (AWT) con-
sisting of about 114 KLOC. The screenshot in Figure 25.2
shows a cut-out of the results of this analysis as UML
class diagrams. The detected design-patterns are repre-
sented by dashed ovals consisting of the pattern’s name
and the accuracy value. We took this analysis as proof-
of-concept, because the design-patterns included in the li-
brary are known.

In order to show the scalability of the approach, we
analysed the Fujaba Tool Suite itself with about 750
KLOC. The goal of the analysis was also the detection of
design-patterns.

We have also used the prototype to analyse the JigSaw
webserver and have recovered the hot spots of the system
detecting architecture patterns. The results were compa-
rable to others produced by different reverse engineering
tools. During the analysis process early produced mean-
ingful results have been taken to proof hot spot hypotheses
at certain parts of the system. Compared to other tool’s
results, ours have not only pointed out the hot spots but
also additional information such as bridges between parts
or central data structures.

The prototype was also successfully used in an indus-
trial context on an application with more than 300 KLOC.
The result of the analysis was that design decisions have
been neglected by the developers implementing the sys-
tem.

Further research. Our approach is not limited to detect
design-patterns. Currently the prototype is used to detect
Anti-Patterns and to rewrite ‘bad’ patterns by ’good’ ones.
Therefore the rules get property values describing positive
and negative aspects.

Another research direction is to combine the presented
approach with other ones. As example, the approach has
been combined with a dynamic analysis. The static analy-
sis indicates possible design-pattern instances, which will
be verified by a dynamic analysis. Technically, an (in-
termediate) analysis result is a graph and therefore ex-
changeable with other tools using common exchange for-
mats such as GXL.

A significant aspect concerning the overall duration of
an analysis is the choice of the initial rule catalog. Using
a catalog with coarse-grained rules means much iteration



Figure 25.2: Annotated UML Class Diagram

to get a detailed result. Starting with a catalog with fine-
grained rules may have the effect that the rules are not ap-
plicable, which means to get no results. Therefore we cur-
rently investigate the opportunity to use problem manage-
ment systems for catalogs and their relations to analysed
systems.

Bibliography
[1] J. Niere. Incremental Design-Pattern Recognition.

PhD thesis, University of Paderborn, Paderborn, Ger-
many, 2004. in german (to appear).

[2] J. Niere, W. Schäfer, J. Wadsack, L. Wendehals, and
J. Welsh. Towards pattern-based design recovery. In
Proc. of the 24th International Conference on Soft-
ware Engineering (ICSE), Orlando, Florida, USA,
pages 338–348. ACM Press, May 2002.

[3] J. Niere, J. Wadsack, and L. Wendehals. Handling
large search space in pattern-based reverse engineer-
ing. In Proc. of the 11th International Workshop
on Program Comprehension (IWPC), Portland, USA,
pages 274–279. IEEE Computer Society Press, May
2003.


