
35 Experiences with
lightweight checks for mass-maintenance transformations
Niels Veerman
Vrije Universiteit, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
nveerman@cs.vu.nl

Keywords automated modifications, lightweight ap-
proach, mass-maintenance

The use of automated modifications has gradually in-
creased in the field of software maintenance. These
maintenance transformations can be found where software
needs to be maintained. Tools for code analysis have be-
come more and more indispensable to maintain large sys-
tems, and large-scale modifications, such as Euro conver-
sions, Y2K repairs or database migrations, have called
for automated maintenance transformations, as argued for
in [2].

The increasing interest in automated maintenance has
heightened the need for control over automatic transfor-
mations. For instance, automated changes on business-
critical systems should not jeopardize the operations of a

company. Such changes usually consist of several complex
transformations, making verification of an entire transfor-
mation on a large system difficult. Millions of lines of
code can be affected by a mass update, and it is not very
practical to inspect the resulting programs by hand. An
alternative, extensive testing, can be expensive and not al-
ways feasible in practice. Automated massive changes are
often carried out by software renovation companies, and
they usually do not possess the required hard- and/or soft-
ware to, for instance, compile and test a mainframe sys-
tem. Although the owner of the system does have this op-
tion, compiling and testing can be an expensive exercise so
possible errors should be detected in an early stage. There-
fore, a different way is needed to control such maintenance
transformations.



Another approach is to prove the correctness of a trans-
formation in advance. However, to prove the correctness
of mass-maintenance transformations, one would need the
semantics of the programming language. Such an ap-
proach has several drawbacks. Besides the fact that there
can be several different semantics for a language because
of different dialects, compilers, compiler flags and operat-
ing systems (see [1]), it can be an expensive process and
also prone to errors, and as soon as something changes
(e.g. compiler version or operating system version) a dif-
ferent semantics needs to be developed. Moreover, one
would also have to prove the used transformations sys-
tem correct, for instance the preprocessor, parser and pret-
typrinter and so on. For these reasons, a correctness proof
for mass-maintenance transformations on legacy systems
is not practical, and we need other ways to make sure the
updated systems are behaving as expected.

We have experimented with a lightweight approach to
check large-scale maintenance transformations. Our start-
ing point is two large-scale transformation projects that we
carried out. Our approach concentrates on transformations
for software maintenance, but can also be used in other
areas. We present a range of checks to identify errors in
transformations and discuss their application to real life
cases.

Bibliography
[1] R. Lämmel and C. Verhoef. Cracking the 500-

Language Problem. IEEE Software, pages 78–88,
November/December 2001.

[2] C. Verhoef. Towards Automated Modification of
Legacy Assets. Annals of Software Engineering,
9:315–336, 2000.


