
26 Specifying Patterns for Dynamic Pattern Instance Recognition with UML
2.0 Sequence Diagrams1

Lothar Wendehals
Software Engineering Group, Department of Computer Science University of Paderborn, Germany
lowende@upb.de

26.1 Motivation
Design recovery, which means extracting design docu-
ments from source code, assists a reverse engineer in un-
derstanding a software system. For design documentation
design patterns [1] are suitable. By recognizing instances
of design patterns in the system’s source code the implicit
design can be documented.

Most approaches use static analysis techniques e.g. [3].
In object-oriented languages static analysis only is not
sufficient, since structurally similar patterns are not dis-
tinguishable from each other. Design patterns often dif-
fer only in their behavior. Polymorphism and dynamic
method binding prevent a correct static analysis of method
invocations that are essential to analyze behavior. Thus,
for a precise recognition of design pattern instances a com-
bination of static and dynamic analyses is reasonable, e.g.
[2].

For tool supported recognition patterns have to be for-
mally specified. Prolog is a common specification lan-
guage, e.g. [2]. Others use script languages like Perl with
regular expressions [3]. We developed a more intuitive
graphical specification language for static analysis based
on graph grammars [4].

We extend our static analysis process by dynamic anal-
ysis of method traces [6]. The process starts with static
analysis of the source code resulting in a set of pattern
instance candidates. The set is then verified by dynamic
analysis. In the following the main focus is on a pattern
specification language for behavioral patterns based on se-
quence diagrams.

26.2 Example
There are lots of design patterns that are structurally equal
or at least similar such as Decorator and Chain of Respon-
sibility, Strategy and Bridge or Strategy and State, which
are depicted in Figures 26.1 and 26.2.

Context
request()

Strategy
algorithm()

ConcreteStrategyA
algorithm()

ConcreteStrategyB
algorithm()

strategy

1

Figure 26.1: The Strategy Design Pattern

A Strategy design pattern lets an algorithm vary inde-
pendently from the client that uses it. An abstract class
Strategy defines the algorithm interface, which is imple-
mented by different ConcreteStrategy classes.

Context
request()

State
handle()

ConcreteStateA
handle()

ConcreteStateB
handle()

state

1

Figure 26.2: The State Design Pattern

The State design pattern allows an object to alter its be-
havior depending on its internal state. An interface for han-
dling the behavior is defined by the abstract class State
and implemented by different ConcreteStates. Imple-
mentations of these two design patterns are not distin-
guishable by static analysis. The next section shows how
their behavior can be specified by sequence diagrams for a
precise recognition.

26.3 Pattern Specification
In [1] there are some hints how the two design patterns
Strategy and State differ in their behavior. It is said for a
Strategy that “A context forwards requests from its clients
to its strategy. Clients usually create and pass a Con-
creteStrategy object to the context...”. So changing the
concrete strategy is done by the client.

request()

request()

setStrategy(b)

setStrategy(a)

loop (1,n)

loop (1,m)

algorithm()

algorithm()

sd Strategy :Client :Context

opt

a:Strategy b:Strategy

Figure 26.3: Sequence Pattern for Strategy

Figure 26.3 depicts a UML 2.0 sequence diagram for a
Strategy that formalizes the description above. It is called
a sequence pattern and can be read as follows: first of
all a strategy object must be set on the context object by
the client. An arbitrary number of calls from the client
must be delegated to the strategy. Then the strategy may
be changed by the client and another arbitrary number of
delegations may be processed.

In UML 2.0 a new syntax element Combined Fragment
is introduced to sequence diagrams. It is visualized as a
rectangle with an operator within the upper left corner. The
operator loop (1,n) e.g. defines a sequence repeated at least

1This work is part of the FINITE project funded by the German Research Foundation (DFG), project-no. SCHA 745/2-1.



once or up to n times. The operator opt defines an optional
sequence. Other operators are alternatives, negative, con-
sider, etc.

The operator consider has some methods as parame-
ter. Only calls of those methods are displayed within the
sequence, but they may be interleaved by other calls that
are ignored. In sequence patterns the consider operator
is implicitly used. Only calls of methods used within the
sequence are considered in the pattern matching, other in-
terleaving calls are ignored. In the given example there
could be numerous other calls between the first setStrat-
egy call and the loop, but no second setStrategy call.
Thus, a sequence pattern does not describe a single ex-
ecution sequence but a set of sequences with a common
subsequence. This subsequence can be compared to some
kind of slice of the program’s method call trace where only
a few method calls are considered.

For the State pattern it is said in [1]: “... Clients can
configure a context with State objects. Once a context is
configured, its clients don’t have to deal with the State
objects directly. Either Context or the ConcreteState sub-
classes can decide which state succeeds another and un-
der what circumstances.”. So the states are changed by the
context or the states.

Figure 26.4 depicts the sequence pattern for a State.
The state must be changed during runtime, otherwise dif-
ferent states make no sense. This is specified as an alterna-
tive, where the state can be switched either by the current
state or by the context.

handle()
request()

setState(b)

setState(b)

alt

request()

loop (1,n)

handle()
loop (1,m)

:Client :Context a:State b:Statesd State

Figure 26.4: Sequence Pattern for State

The dynamic analysis uses these sequence patterns to
verify pattern instance candidates from static analysis. A
candidate both for Strategy and State can now be classified
as one of the two patterns or as a false positive. Note, the
class and method names are not considered in the analy-
sis. They are just for a better readability of the sequence
patterns.

26.4 Current and Future Work
In the static analysis we allow for the composition of struc-
tural patterns to new patterns to reduce the effort of spec-
ification. It has to be researched if reusing patterns is rea-
sonable for sequence patterns, too.

The composition of patterns is especially used for
higher level design patterns composed of lower level
clichés. We are currently working on the specification of
sequence patterns for those clichés and of course for all
design patterns.

In [5] we describe how pattern instances can be rated
by fuzzy values to express the accuracy of the match and
to help the reverse engineer assessing the results. For se-
quence patterns the number of ignored calls within the
matching method trace can be used to rate the match. If
only a few ignored method calls interleave the given pat-
tern sequence, the match has a high accuracy, otherwise, it
has a low accuracy.

Bibliography
[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-

sign Patterns: Elements of Reusable Object Oriented
Software. Addison-Wesley, Reading, MA, 1995.

[2] D. Heuzeroth, S. Mandel, and W. Löwe. Generat-
ing design pattern detectors from pattern specifica-
tions. In Proc. of the 18th International Workshop
on Automated Software Engineering (ASE), Montreal,
Canada, October 2003.

[3] R. Keller, R. Schauer, S. Robitaille, and P. Page.
Pattern-based reverse-engineering of design compo-
nents. In Proc. of the 21st International Conference on
Software Engineering, Los Angeles, USA, pages 226–
235. IEEE Computer Society Press, May 1999.

[4] J. Niere, W. Schäfer, J. Wadsack, L. Wendehals, and
J. Welsh. Towards pattern-based design recovery. In
Proc. of the 24th International Conference on Soft-
ware Engineering (ICSE), Orlando, Florida, USA,
pages 338–348. ACM Press, May 2002.

[5] J. Niere, J. Wadsack, and L. Wendehals. Handling
large search space in pattern-based reverse engineer-
ing. In Proc. of the 11th International Workshop
on Program Comprehension (IWPC), Portland, USA,
pages 274–279. IEEE Computer Society Press, May
2003.

[6] L. Wendehals. Improving design pattern instance
recognition by dynamic analysis. In Proc. of the ICSE
2003 Workshop on Dynamic Analysis (WODA), Port-
land, USA, May 2003.


