21 Supporting Reverse Engineering Tasks with a

Fuzzy Repository Framework

René Witte

Concordia University, Department of Computer Science

Montréal, Québec, Canada
me@rene—-witte.net

Ulrike Kolsch

T-Systems International GmbH, Fasanenweg 5, Leinfelden, Germany

koelschlacm.org

Abstract

Software reverse engineering (RE) is often hindered not by
the lack of available data, but by an overabundance of it:
the (semi-)automatic analysis of static and dynamic code
information, data, and documentation results in a huge
heap of often incomparable data. Additionally, the gath-
ered information is typically fraught with various kinds of
imperfections, for example conflicting information found
in software documentation vs. program code.

Our approach to this problem is twofold: for the man-
agement of the diverse RE results we propose the use of
a repository, which supports an iterative and incremental
discovery process under the aid of a reverse engineer. To
deal with imperfections, we propose to enhance the repos-
itory model with additional representation and processing
capabilities based on fuzzy set theory and fuzzy belief re-
vision.

Keywords: fuzzy reverse engineering, meta model, exten-
sion framework, iterative process, knowledge evolution

21.1 Knowledge Acquisition Process in RE

Reverse engineering can be described as a process of
knowledge acquisition by proposing, validating, or falsi-
fying hypotheses in order to form an abstract model. De-
riving a conceptual model from a given implementation is
a task fraught with ambiguity and vagueness because of
the impedance mismatch problem.

Due to the large amount of information and the num-
ber of colliding hypotheses an automated support for the
reverse engineers is highly needed. This automation must
be able to keep track of the numerous analysis results, the
proposed hypotheses as well as the interdependencies be-
tween all gained reverse engineering artifacts. Addition-
ally, an automated support has to be able to detect and
propagate information supporting or contradicting specific
hypotheses or reverse model entities.

To our understanding the reverse engineering repository
is the ideal point to offer such services. The meta model of
a repository defines the representation abilities as well as
the data manipulation capability of the reverse engineer-
ing process using it [1]. In order to improve and automate
the RE process we are currently developing a fuzzy exten-
sion framework that can deal with imperfection and sup-
ports the continuing evolution of a knowledge basis with

hypotheses based on formal concepts of fuzzy set theory
and belief revision.

21.2 Knowledge Capturing and Representa-
tion

The RE repository and its meta model play a central role in
establishing the technology that is most needed for dealing
with imperfect information and hypotheses during reverse
engineering. We developed a fuzzy extension framework
that enhances the modeling capacity of RE meta models in
such a way that imperfect data can now be handled.

The central requirement for such a model is the abil-
ity to handle several kinds of imperfections: uncertain and
vague information, as well as the ability to handle incon-
sistencies. These requirements have also been identified
by other research groups, e.g. in [2].

In this section we briefly outline the concept of our
fuzzy extension framework for meta models of reverse en-
gineering repositories. For a detailed description please
refer to [3].

The formal basis for dealing with the mentioned kinds
of imperfections is fuzzy set theory. For our fuzzy RE
repository we deploy a fuzzy-set based model that has been
developed especially for the use within information sys-
tems [4]. It provides the necessary features for supporting
the requirements of the RE process, especially the abil-
ity to backtrack information and modify a knowledge base
through non-monotonic belief revision operators.

Annotatable Object — ] Annotation % Facet
depends_on
Reverse Artefact describes contains
features [1..n] - features - ;ﬁgg Z%fn s
. - feature sets — fuzzy literals
feature(x):result - concepts Z fuzzy clauses

feature(x,value)

— fuzzy formulas

feature(x,fuzzy):fuzzy_result
feature(x,fuzzy_value)
‘ Concepts

Figure 21.1: The generic fuzzy model

The key idea is to add imperfect information as an or-
thogonal extension through a frame-like concept, which
we call annotations. Each object (or part of an object,



like an attribute) holding RE information can thus be an-
notated with container objects referring to one or multiple
meta-information objects, called facets. Within our model,
facets can store imperfect RE information in form of fuzzy
components, like fuzzy sets, fuzzy literals, fuzzy clauses,
or fuzzy formulas.

The annotation model offers the possibility to fuzzify
individually all artifacts of a meta model, e.g. objects, re-
lationships, features, and feature sets. As shown in Figure
21.1, every artifact inherits from the generic meta-object
ANNOTATABLE OBJECT. Through inheritance all proper-
ties and operations of the fuzzy model now become avail-
able within the extended meta model.

21.3 Knowledge Consolidation and Hypoth-
esis Support

The fuzzy enhanced repository model already allows us to
store more detailed information for each RE artifact. In-
formation from different sources (e.g., different analysis
tools) can be stored together and, provided the tools have
been adapted to the fuzzy format, automatically compared.

But this is only the first step in providing a semanti-
cally richer repository framework: we also need to support
different computations based on the fuzzy data structures.
For example, although the repository can store conflicting
information about an artifact, such conflicts are not auto-
matically recognized and resolved. But the sheer amount
of data makes it impractical to simply rely on the reverse
engineer to detect and resolve such conflicts. Instead, we
want to support the RE process by defining higher-level
methods that allow to specify relationships and interdepen-
dencies between artifacts. Gathered data will then auto-
matically be compared with already existing information.

Finding and automatically resolving conflicts is
achieved by executing fuzzy belief revision operators [5]
on the gathered RE information. The idea of belief re-
vision is to maintain a consistent knowledge base by re-
moving (revising) existing information that cause a con-
flict with any added new information. By using fuzzified
versions of these operators, we can allow for a varying de-
gree of inconsistency within a repository: most often the
information found by various tools in different sources will
not match exactly due to inherent uncertainties in the used
data or applied methods. We can even adjust the allowed
degree of inconsistency over time: at the beginning of a RE
process, where there is not much known about a system, it
is permissible to start with a low degree of internal con-
sistency, then gradually increasing it over time and finally
converging to a single consistent view of the examined sys-
tem.

To also allow such belief revision operators across dif-
ferent concepts and artifacts, we enhanced the structural
model outlined in the last section with the concept of fuzzy
dependency graphs. Dependency graphs show how the RE
artifacts within a repository are connected to each other,
they externalize knowledge about a system from a RE en-

gineer by storing the dependencies between the artifacts
in the repository. Annotations attached to RE artifacts be-
come nodes in this graph, and directed edges represent de-
pendencies between artifacts. An example for a depen-
dency would be the relationship between the rype of a pro-
gram variable and its usage within the application. An
additional data dictionary holds transformation functions
that show precisely how a change to the information at one
node affects the dependent nodes.

By using the dependency graph, information from one
RE step is not simply stored in the repository, it can now
trigger a graph revision operation that propagates changes
throughout the repository. The performing RE engineer
can adjust the required degree of consistency as outlined
above and also select preferences on the available data,
which will influence which information are removed in
case of a conflict.

More about the theoretical foundations of this work can
be found in [3, 4].

21.4 Conclusions and Future Work

Our approach deals with two important problems within
the reverse engineering domain: the integration of hetero-
geneous results through a RE repository and the (semi-)
automatic support of result consolidation and hypothesis
support through fuzzy belief networks.

The core idea of our work is the acknowledgment that
imprecision, inconsistency, and vagueness are unavoidable
elements in reverse engineering. Instead of ignoring such
imperfections, we provide tailored support for them based
on the established theoretical foundation of fuzzy set the-
ory. This allows us to deal with imperfect information ex-
plicitly, adding new capabilities to the RE domain.

With the theoretical and technical foundations in place,
we are currently preparing experiments on several real-
world examples that will combine information obtained
through automated analysis of source code with a domain
model gathered by text mining the program’s documenta-
tion and specification through natural language analysis.

Bibliography

[1] Jean-Marie Favre, Mike Godfrey, and Andreas Winter, edi-
tors. Preproceedings of the Ist International Workshop on
Meta-Models and Schemas for Reverse Engineering, Victo-
ria, British Columbia, Canada, November 2003.

[2] Jens H. Jahnke and Andrew Walenstein. Reverse Engineer-
ing Tools as Media for Imperfect Knowledge. In Proc. of the
7th WCRE. IEEE Computer Society Press, 2000.

[3] Ulrike Kolsch and René Witte. Fuzzy Extensions for Re-
verse Engineering Repository Models. In Proc. of the 10th
WCRE. IEEE Computer Society Press, 2003.

[4] René Witte. Architektur von Fuzzy-Informationssystemen.
BoD, Norderstedt, Germany, 2002. ISBN 3-8311-4149-5.

[5] René Witte. Fuzzy Belief Revision. In 9tk Intl. Workshop
on Non-Monotonic Reasoning, pages 311-320, Toulouse,
France, April 19-21 2002. http://rene-witte.net.



