
A Static Extension of DynAMiT

Silvia Breu
FernUniversiẗat in Hagen
silvia.breu@gmail.com

Jens D̈orre
Universiẗat Passau

doerre@neo.fmi.uni-passau.de

1 Introduction

With software systems becoming more and more complex,
developers face increasing difficulties in building modu-
lar systems that cannot be tackled by “traditional” design
and programming techniques. Anticipation of change can
only be accomplished if the complexity of successive soft-
ware releases is controlled and “code tangling” is limited.
Aspect-oriented programming (AOP) [3, 4] has been de-
veloped to deal with these problems.

Recently, these ideas have also been used for re-
engineering. The major task here is to find and isolate
crosscutting concerns, which is called aspect mining. De-
tected concerns can be re-implemented as aspects, which
reduces complexity and improves maintainability and ex-
tensibility of software systems.

Several techniques have been proposed for aspect min-
ing [5], including our DynAMiT approach [1, 2]. It mines
aspects in program traces that are generated during pro-
gram execution. These traces are investigated for recurring
patterns of execution relations. We expect such recurring
patterns to describe repeated functionality in the program
and thus reflect potentially crosscutting concerns which
can be replaced by aspects. Different constraints specify
when a pattern is “recurring”, such as the requirement that
the relations have to exist more than once or even in dif-
ferent calling contexts in the program trace. The dynamic
analysis approach has been chosen because it monitors ac-
tual program (i.e., run-time) behaviour instead of potential
behaviour, as static program analysis approaches do.

However, DynAMiT’s dynamic analysis has limitations
that are partly due to dynamic binding at run-time. These
can lead to the identification of aspect candidates that
have already been encapsulated properly following object-
oriented design principles. This paper describes a static
extension of the approach that mitigates this problem.

2 Problem of Dynamically Mining Methods

Case studies conducted with DynAMiT have identi-
fied crosscutting concerns in small tools as well as in
industrial-sized systems. Additionally, aspects that were
added to systems using AspectJ were also recovered. How-
ever, while the approach is generally fairly precise, further
analysis revealed that some false positives were systemat-
ically caused by dynamic binding.

Figure 1 illustrates that issue.interface I has two
method declarationsa andc . class B implements that
interface, whileabstract class A only implements
methoda of I . abstract class A is extended by two
subclassesC1 and C2, which both provide implementa-
tions of methodc whose declaration is inherited fromI .

interface I { class B implements I {
public void a(); public void a() {}
public void c(); public void c() {}

} }
abstract class A implements I {

public void a() {}
}
class C1 extends A { class C2 extends A {

public void c() {} public void c() {}
} }

class Runner {
static void doSth(A a) {

a.a();
a.c();

}
static void doSth(B b) {

b.a();
b.c();

}
public static void main(String[] arguments) {

A obj1 = new C1();
A obj2 = new C2();
B obj3 = new B();
doSth(obj1);
doSth(obj2);
doSth(obj3);

}
}

Figure 1: Example code of a software system

class Runner uses this hierarchy; its execution gen-
erates the trace in Figure 2(a). Here, the crosscutting al-
gorithm incorrectly identifies the before-aspect candidates
A.a ⇀ C1.c andA.a ⇀ C2.c . However, the underly-
ing code pattern exists only once in the code, namely in
void doSth(A a) . Hence, whenever there are abstract
methods with several concrete implementations, the dy-
namic aspect mining algorithms will systematically pro-
duce false positives. This poses a real-world problem as
dynamic binding is at the heart of object-oriented design
and programming.

3 Idea: Static Extension of Traces

DynAMiT’s algorithms can produce false positives due to
dynamic binding at run-time because they do not work
on the code but on method signatures only: Since each
method call in the code can result in different implementa-
tions being executed, there are likely to be different signa-
tures in the trace for this one call statement. This creates
the spurious “different” calling contexts that may result in
wrong aspect candidates.

If we now consider the static type of the reference ob-
jects in the traces, the program trace will change, as we
see in Figure 2(b). There, the crosscutting algorithm will
no longer detect the incorrect crosscutting concerns men-
tioned above. Thus, this could be the solution to the prob-
lem described in Section 2: An integration of static infor-
mation into the traces would often allow to avoid that an
invocation of the same functionality (i.e., occurring only

void Runner.doSth(A) {
void A.a() {}
void C1.c() {}

}
void Runner.doSth(A) {

void A.a() {}
void C2.c() {}

}
void Runner.doSth(B) {

void B.a() {}
void B.c() {}

}

(a) ’Traditional’ dynamic

void Runner.doSth(A) {
void A.a() {}
void A.c() {}

}
void Runner.doSth(A) {

void A.a() {}
void A.c() {}

}
void Runner.doSth(B) {

void B.a() {}
void B.c() {}

}

(b) With static object info

Figure 2: Dynamic vs ’static’ trace

once in the code) appears to be crosscutting in the traces.

4 Modified Tracing

The traces of a program for a given test suite are generated
using AspectJ which offers two different kinds of pointcuts
for methods. Execution pointcuts, which are used in the
original DynAMiT version, use the dynamic information
of the typeimplementingthe method (i.e., after dynamic
binding) at the callee’s site. Call pointcuts, in contrast, use
the static type information (i.e., the static type of the refer-
ence object) at the caller’s site. Unfortunately, the choice
of pointcuts influences the content of the traces. This is
due to implementation limitations of AspectJ.

AspectJ currently uses byte-code or load-time weaving,
and thus has no control over the API-(byte-)code. It is
therefore not able to advise (i.e., use or instrument) point-
cuts inside the API. A call to the API can be located in
the client code, whereas an execution of an API method is
located in the API; hence, it is not traced when using exe-
cution pointcuts. On the other hand, a call from the API to
client code is inside the API, whereas its execution is in the
client code. Such calls arise if the client code makes use of
frameworks or callbacks; this is the case for AWT/Swing
user interfaces using Listeners, for some other parts of the
API, and even for a Java application’s main method. These
calls are not traced by method-call pointcuts (while calls
inside them remain in the traces). Nevertheless, calls to
the API are in general more common than callbacks, so it
is safe to say that call pointcuts will monitor a much larger
part of all method invocations than execution pointcuts.

5 Initial Evaluation

We evaluated the described static extension on the AnCho-
Vis visualisation tool, which was also used in [1]. In com-
parison, we found less inside-aspect candidates, but in gen-
eral substantially more outside-aspect candidates.

Most changes are due to the fact that the set of traced
methods changed, as explained above. This has three
different consequences: The set of aspect candidates
tends to be larger, because more different method sig-
natures are contained in the trace. On the other hand,
it could also become smaller because some methods are
no longer traced, for examplevoid anchovis.AnCho-

Vis.main(String[]) . Finally, the aspect candidates
themselves change because API method calls appearin

betweenformer relations. This affects in particular the
firstIn-relations, because the parameters for a method
(here the inner one) often have to be evaluated by API
methods prior to the method call itself. Thus thevoid

anchovis.Logging.entering(String) ∈> . . . can-
didate is replaced byString java.lang.String-

.valueOf(Object) ∈> This means that half of
the logging concern is masked by an API method.

In the case study, the use of static object information
proved to be beneficial. It eliminated wrong aspect candi-
dates of the type shown in Section 3, and sometimes even
detected new candidates as for example
String java.io.BufferedReader.readLine() ↼

BufferedReader anchovis.Data2Matrix.getReader(),
BufferedReader anchovis.FunctionMapping.getReader()

It is a correct crosscutting concern because the two calls
appear at different locations in the code: in the classes
Data2Matrix andFunctionMapping . The original ver-
sion of DynAMiT did not detect it, because there is only a
single implementation of thegetReader() functionality
in the common superclass.

6 Conclusions and Future Work

Our idea to include static information in the analysis
proved to be promising in this case study. In order to
draw more general conclusions, however, it is necessary
to conduct further case studies with large programs that
have a deep inheritance hierarchy. Most differences to
classic DynAMiT were due to additional API calls being
traced (by byte-code instrumentation). Therefore the com-
plete analysis became more fine-grained. This probably
impairs program understanding and certainly the possibil-
ity of high-level mining for general crosscutting concerns
like logging. However, it may enhance implementability
of aspect candidates and thus ease refactoring.

We made two observations that may help to improve the
proposed extended analysis: First, most of the “interfer-
ing” methods are inclass java.lang.String , espe-
cially those implementing the concatenation operator. The
number of masked aspect candidates is likely to decrease
considerably if we exclude those methods/classes from the
analysis. Second, the problems with string concatenation
and parameter evaluation do appear in the linearised, com-
piled byte-code (and, of course, later on at run-time, and
thus in every kind of trace). But they do not appear in or
affect the analysis of source code. It could thus be worth-
while to consider a (static) analysis of the source code.

References
[1] S. Breu. Aspect Mining Using Event Traces. Master’s thesis,

U Passau, Germany, March 2004.

[2] S. Breu and J. Krinke. Aspect Mining Using Event Traces.
ASE-19. IEEE Press, pp. 310–315, 2004.

[3] G.Kiczales et al.Aspect-OrientedProgramming.ECOOP 97.

[4] P. Tarr et al. N Degrees of Separation: Multi-Dimensional
Separation of Concerns.ICSE-21, pp. 107–119, 1999.

[5] A. van Deursen, M. Marin, and L. Moonen. Aspect Mining
and Refactoring.REFACE, 2003.

