
Aspect Mining based on Control-Flow

Jens Krinke, Silvia Breu

FernUniversität in Hagen, Germany

krinke@acm.org, silvia.breu@fernuni-hagen.de

1 Introduction

Aspect mining tries to identify crosscutting concerns in ex-

isting systems and thus supports the adaption to an aspect-

oriented design. This paper describes an automatic sta-

tic aspect mining approach, where the control flow graphs

of a program are investigated for recurring execution pat-

terns based on different constraints, such as the require-

ment that the patterns have to exist in different calling con-

texts. A case study done with the implemented tool shows

that most discovered crosscutting candidates are most of-

ten perfectly good style.

2 Aspect Mining

A major problem in re-engineering legacy code based on

aspect-oriented principles is to find and to isolate these

crosscutting concerns. This task is also called aspect min-

ing. The detected concerns can be re-implemented as sepa-

rate aspects, thereby improving maintainability and exten-

sibility as well as reducing complexity. Aspect mining can

also provide insights that enable us to classify common as-

pects which occur in different software systems, such as

logging, timing, and communication.

Several approaches based on static program analysis

techniques have been proposed for aspect mining. We have

developed a dynamic program analysis approach [1] that

mines aspects based on program traces. Based on the ex-

perience with the dynamic approach, we implemented a

similar static analysis. This analysis extracts the execution

relations from a control flow graph of the analyzed pro-

gram. In particular, we immediately extract uniform and

crosscutting execution relations without a previous step to

extract unconstrained execution relations. However, the

extraction is different for outside and inside execution re-

lations. Here, we will only present inside-first (R∈> ) and

outside-before (R⇀) execution relations. Due to space

constraints, we refer the reader to [1] for definitions and

notations.

Inside-First Execution Relations. For these kind of ex-

ecution relations, we extract the method invocations im-

mediately following the entry of (invoked) methods from

the control flow graph. Such a relation is uniform, if

every path through the method starts with the same method

call. Moreover, a possible simplification just considers

the single-entry-single-exit regions starting at the meth-

ods’ entry nodes. Such a relation u ∈> v means now

that method u is the first method invocation inside the

single-entry-single-exit region starting at the entry node of

method v. The definition of crosscutting stays the same,

thus u is a crosscutting method invocation if there are at

least two uniform execution relations u ∈> v and u ∈> w

(v 6= w).

Outside-Before Execution Relations. Here we extract

all pairs of method invocations u, v if there exists a path

from an invocation of method u to an invocation of method

v without any method invocation in between. Such a pair

is a uniform outside-before execution relation u ⇀ v, if

all paths from an invocation of method u contain an in-

vocation of v as the next invocation. The first possible

simplifications is to require that an invocation of u is post-

dominated by an invocation of v without another invoca-

tion in between. The second simplifications is to require

that any invocation of method u is followed by an invoca-

tion of v in all single-entry-single-exit regions containing

an invocation of u.

3 Experiences

We have implemented the presented static mining on top

of the Soot framework [2], which is used to compute the

control flow graph of the analyzed program. Our tool tra-

verses these control flow graphs and extracts the uniform

and crosscutting inside-first and outside-before execution

relations. As a first test case we have analyzed JHotDraw,

version 5.4b1. For inside-first execution relations, the tool

has identified 277 candidates with 1236 uniform and cross-

cutting relations, and for outside-before relations, 92 can-

didates with 294 relations.

It is interesting, that there are many more candidates for

inside-first than for outside-before. Furthermore, there are

a lot of candidates with just a small amount of crosscutting,

e.g., 127 candidates that just crosscut two methods.

We will next discuss some of the identified candidates

in detail. However, due to the large amount of identified

candidates, we will only present the six largest candidates

of each category.

Inside-First Relations The largest candidate consists of

49 uniform and crosscutting execution relations. The in-

voked method is “...CollectionsFactory.current”. It is ob-

vious that this is a method to access the current factory

object, needed in many other methods of the system. This

is clearly crosscutting, however, not a refactorable aspect.

The second largest candidate consists of 32 relations for

the method “...DrawingView.view”. This is again an acces-

1



sor method that returns the currently active view. Thus, it

is crosscutting but not refactorable.

The same holds for the third and fourth candidate,

which both consist of 24 relations. The relevant methods

are “...DecoratorFigure.getDecoratedFigure” and “...Ab-

stractHandle.owner” which are once again accessor meth-

ods.

For the fifth candidate, things are not different: It

consists of 22 relations for the method “...Undoad-

ableAdapter.undo” that checks whether the current object

represents an undo-able action.

Things change for the sixth candidate consisting of 20

relations for method “...AbstractFigure.willChange”. That

method informs a figure that an operation will change the

displayed content. This is the first candidate that is a cross-

cutting concern which could be refactored into an aspect.

Outside-Before Relations The largest discovered can-

didate consists of 13 uniform and crosscutting execution

relations for the method “...Iterator.next”. A closer look

to the 13 invocations reveals that this crosscutting is more

or less incidental: An operation is performed on the next

element of a container.

The second largest candidate is somewhat interesting:

It consists of 12 invocations before a call to “...Abstract-

Command.execute”, from which 11 are invocations of

method “createUndoActivity”. The other is an invocation

of “...ZoomDrawingView.zoomView”, which seems to be

an anomaly. However, the other 11 invocations are of

classes representing operations that change the figure and

zoomView (probably) does not change it.

The next three largest candidates (consisting of

11, 9, and 8 relations) are again more or less

incidental crosscutting concerns related to methods

“...DrawingView.drawing”, “...List.add”, and “...Draw-

ingView.view”. However, it is interesting to see that Draw-

ingView.view was also part of a large inside-first candidate.

Again, only the sixth largest candidate can be seen as

crosscutting concern that can be refactored into an aspect.

It consists of seven relations for method “...AbstractFig-

ure.willChange”. It is immediately called before methods

that will change the displayed figure. However, it is in-

teresting to see that this method has also appeared as an

inside-first candidate, where the candidate is larger (20 re-

lations).

A simple filter

We have seen in the last section that most of the discovered

crosscutting concerns are not to be refactored, because

they are perfectly valid in their characteristics. However,

we want to identify crosscutting concerns that are more in

the style of superimposition, i.e. that add behavior at the

place where they are used but without having a direct de-

pendence with the enclosing code.

A very simple, but very effective filter uses the signa-

tures of the invoked methods. It is based on the assump-

tion that any method that returns a value has been dele-

gated a task to perform that is part of a bigger function-

ality/concern. This is like a trivial form of crosscutting

size relations size relations

2 30 9 0

3 15 10 1

4 11 11 1

5 1 13 1

6 1 17 1

7 2 20 1

8 2

261 relations (R∈> ) in 67 candidates

Table 1: Filtered Inside-First Execution Relations

that lead to the introduction of procedures and methods in

programming languages. Thus, we assume that only void

methods are not directly needed where they are invoked.

Of course, this is over-simplifying because of reference

parameters. The implemented filter extracts only those

uniform and crosscutting execution relations that involve

a void method.

A closer look at the extracted relations (see Table 1 for

an overview) reveal that most of them have the character-

istics of crosscutting concerns, especially the larger ones.

4 Conclusions

This initial evaluation of the static aspect mining tool has

shown that most of the identified crosscutting candidates

are not concerns refactorable into aspects. This is not

much different from results in our previous dynamic as-

pect mining [1]. However, both approaches give interest-

ing insights into the crosscutting behavior of the analyzed

program. Moreover, as seen in the example for method

AbstractCommand.execute, they can probably be used to

discover crosscutting anomalies, an anomaly in the dis-

covered execution relation pattern.

References

[1] Silvia Breu and Jens Krinke. Aspect mining using

event traces. In Proc. International Conference on Au-

tomated Software Engineering, pages 310–315, 2004.

[2] Raja Vallee-Rai, Phong Co, Etienne Gagnon, Laurie

Hendren, Patrick Lam, and Vijay Sundaresan. Soot

– a java bytecode optimization framework. In Proc.

CASCON, 1999.


