
Lightweight Control-Flow Abstraction

Christian Lindig Valentin Dallmeier Andreas Zeller
Saarland University

Department of Computer Science
Saarbrücken, Germany

{lindig,dallmeier,zeller}@cs.uni-sb.de

Abstract

To dynamically capture an application’s control flow,
we propose call sequence sets as a light-weight ab-
straction. Unlike prior approaches based on gram-
mars or trees, call sequence sets are easy to aggregate
and compare, which facilitates incremental construc-
tion and comparison of control flow within and across
program runs.

1 Introduction

What a program does is reflected to a large extend by
its control flow (with data flow being another). Con-
trol flow is easily captured dynamically as a trace—
the sequence of statements, basic blocks, or methods
being executed. The hard part is the volume of trace
data, and the level of detail. Without some abstrac-
tion, the volume of data quickly becomes impenetra-
ble (Reiss and Renieris, 2001).

For automatic fault localization in Java applica-
tions (Dallmeier et al., 2005) we have captured control
flow using call sequence sets. They provide a light-
weight, compact, and abstract representation with set
semantics: because of these, we could capture the
control flow of individual objects and aggregate them
into one set per class. Also because of set seman-
tics, we could easily compare the control flow of one
class across several program runs. We believe that
call sequence sets are generally useful to capture and
compare control flow.

2 Call Sequence Sets

A call sequence set is derived from the trace of meth-
ods an object invokes.1 Such a trace is a long sequence
of calls, where each call is characterized by its class,
method name, and signature (to resolve overloading).

A call sequence set is obtained from a trace by slid-
ing a window over it. The contents of the window
characterize the trace, as demonstrated in Figure 1:
a window of width two is slid over a trace of an ob-
ject that calls InputStream (IS) and OutputStream
(OS) objects. Note that the call sequence 〈IS.read,

1This would work equally well for a more fine-grained trace
of basic blocks, or any other trace.
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Figure 1: A trace of calls is abstracted to a call se-
quence set using a sliding window of width 2.

OS.skip〉 appears twice in the trace, but only once in
the call sequence set.

Formally, a trace S is a string of calls: 〈m1, . . . ,
mn〉. When the window is k calls wide, the set P (S, k)
of observed windows are the k-long substrings of S:
P (S, k) = {w | w is a substring of S ∧ |w| = k}. For
example, consider a window of size k = 2 slid over S
and the resulting set of sequences P (S, 2):

S = 〈abcabcdc〉 P (S, 2) = {〈ab〉, 〈bc〉, 〈ca〉, 〈cd〉, 〈dc〉}

Going from a trace to its call sequence set is an ab-
straction that entails a loss of information: differ-
ent traces may lead to the same call sequence set.
The amount to which this happens is controlled by k:
larger windows lead to more unique sequences.

The size of a call sequence set may grow exponen-
tially: With n distinct methods, up to nk different
sequences of length k exist. In practice, sequence sets
are small, though, because method calls are induced
by code, which is static. Its underlying regularity
makes a call sequence set a useful and compact ab-
straction.

2.1 Set Semantics
Because of their set nature, call sequence sets are
meaningful to aggregate and compare. For fault local-
ization we traced individual objects and obtained one



call sequence set per object. But since objects have no
source-code representation, only classes do, we rather
liked to characterize classes. We obtained such a char-
acterization by aggregating the call sequence sets of
objects into one set per class.

Aggregation of call sequence sets is another ab-
straction that also entails a loss of information. A
class’ call sequence set may contain call sequences like
〈ab〉, 〈bc〉, and 〈cd〉 from different objects. Hence, no
single object invoked 〈abcd〉 in this order, although the
class’ call sequence set does suggest it. Again, window
size k controls the degree to which this happens.

Call sequence sets are meaningful to compare: we
used this to compare the behavior of a class in two
different program runs. Comparing the respective se-
quence sets revealed call sequences present in one run,
but not the other. A class with many calls present (or
absent) in a test-failing run but not in a test-passing
run is suspect, and warrants the programmer’s atten-
tion.

2.2 Fault Localization as an Application
Our fault-location technique ranks classes by compar-
ing method call sequences in passing and failing re-
gression tests (Dallmeier et al., 2005). Classes are
ranked high when they exhibit many call sequences
that only occur in failing runs. These rankings turned
out to perform well in a controlled experiment that
used the NanoXML parser as our main subject. In
this experiment, we ranked the classes from 33 ver-
sions of NanoXML, each with a single known fault.

• In 36% of all test runs, the faulty class was ranked
right at the top. On average, a programmer using
our technique must inspect 21% of the executed
classes before finding the fault. All rankings were
noticeably better than random rankings.

• Comparing sequences with k = 1 is equivalent to
ranking classes based on coverage—another tech-
nique for fault localization (Jones et al., 2002).
This performed worse than rankings based on se-
quences with k ≥ 2 and suggests that call se-
quences provide useful extra context.

2.3 Implementation and Performance
Our implementation of call sequence sets uses Java
bytecode instrumentation (Dahm, 1999) to observe
the basic events that form a trace. For efficiency, we
compute call sequence sets directly in memory, rather
than computing a trace first.

The runtime overhead of tracing varies widely.
A computationally intense application—like a ray
tracer—that instantiates an extreme number of ob-
jects, can be slowed down by a factor of 100 or more.
A factor between 10 and 20 is more typical for appli-
cations that also perform some I/O operations. The
memory overhead is typically below a factor of two,
except for applications that instantiate many (small)
objects. While the runtime overhead may sound pro-

hibitive, it is comparable to a simpler coverage anal-
ysis with JCoverage (Morgan, 2004).

3 Related Work

Reiss and Renieris (2001) survey the representation
of control flow as they are used for dynamic analy-
sis. Considerable prior work exists about the com-
pression of traces and call trees, in particular using
automata and grammars (Larus, 1999). None of these
techniques exhibit set semantics and thus the aggre-
gation and comparison of traces is more difficult than
with call sequence sets.

Call sequence sets were inspired by the work of For-
rest et al. (1997) about intrusion detection. They use
n-grams of system calls to detect abnormal behavior
of Unix processes under attack.

4 Conclusions

Call sequence sets are a light-weight data structure to
dynamically capture control flow. Their set semantics
facilitate an incremental or layered analysis: sequence
sets from sub components (like objects or classes) may
be aggregated to represent the control flow of larger
entities. Set semantics also facilitate relative analysis
of control flow: sequence sets from different compo-
nents or program runs are meaningful to compare.

Call sequence sets generalize the notion of coverage:
they indicate the calls executed as well as the temporal
context of each invocation.
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