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Abstract

To dynamically capture an application’s control flow,
we propose call sequence sets as a light-weight ab-
straction. Unlike prior approaches based on gram-
mars or trees, call sequence sets are easy to aggregate
and compare, which facilitates incremental construc-
tion and comparison of control flow within and across
program runs.

1 Introduction

What a program does is reflected to a large extend by
its control flow (with data flow being another). Con-
trol flow is easily captured dynamically as a trace—
the sequence of statements, basic blocks, or methods
being executed. The hard part is the volume of trace
data, and the level of detail. Without some abstrac-
tion, the volume of data quickly becomes impenetra-
ble (Reiss and Renieris, 2001).

For automatic fault localization in Java applica-
tions (Dallmeier et al., 2005) we have captured control
flow using call sequence sets. They provide a light-
weight, compact, and abstract representation with set
semantics: because of these, we could capture the
control flow of individual objects and aggregate them
into one set per class. Also because of set seman-
tics, we could easily compare the control flow of one
class across several program runs. We believe that
call sequence sets are generally useful to capture and
compare control flow.

2 Call Sequence Sets

A call sequence set is derived from the trace of meth-
ods an object invokes.! Such a trace is a long sequence
of calls, where each call is characterized by its class,
method name, and signature (to resolve overloading).

A call sequence set is obtained from a trace by slid-
ing a window over it. The contents of the window
characterize the trace, as demonstrated in Figure 1:
a window of width two is slid over a trace of an ob-
ject that calls InputStream (IS) and OutputStream
(OS) objects. Note that the call sequence (IS.read,

1This would work equally well for a more fine-grained trace
of basic blocks, or any other trace.
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Figure 1: A trace of calls is abstracted to a call se-
quence set using a sliding window of width 2.

0S.skip) appears twice in the trace, but only once in
the call sequence set.

Formally, a trace S is a string of calls: (mg,...,
My ). When the window is & calls wide, the set P(S, k)
of observed windows are the k-long substrings of S:
P(S,k) = {w | w is a substring of S A |w| = k}. For
example, consider a window of size k = 2 slid over S
and the resulting set of sequences P(S,2):

S = (abcabede)  P(S,2) = {{ab), (be), (ca), {cd), (dc)}

Going from a trace to its call sequence set is an ab-
straction that entails a loss of information: differ-
ent traces may lead to the same call sequence set.
The amount to which this happens is controlled by k:
larger windows lead to more unique sequences.

The size of a call sequence set may grow exponen-
tially: With n distinct methods, up to n* different
sequences of length k exist. In practice, sequence sets
are small, though, because method calls are induced
by code, which is static. Its underlying regularity
makes a call sequence set a useful and compact ab-
straction.

2.1 Set Semantics

Because of their set nature, call sequence sets are
meaningful to aggregate and compare. For fault local-
ization we traced individual objects and obtained one



call sequence set per object. But since objects have no
source-code representation, only classes do, we rather
liked to characterize classes. We obtained such a char-
acterization by aggregating the call sequence sets of
objects into one set per class.

Aggregation of call sequence sets is another ab-
straction that also entails a loss of information. A
class’ call sequence set may contain call sequences like
(ab), (bcy, and {(cd) from different objects. Hence, no
single object invoked (abed) in this order, although the
class’ call sequence set does suggest it. Again, window
size k controls the degree to which this happens.

Call sequence sets are meaningful to compare: we
used this to compare the behavior of a class in two
different program runs. Comparing the respective se-
quence sets revealed call sequences present in one run,
but not the other. A class with many calls present (or
absent) in a test-failing run but not in a test-passing
run is suspect, and warrants the programmer’s atten-
tion.

2.2 Fault Localization as an Application

Our fault-location technique ranks classes by compar-
ing method call sequences in passing and failing re-
gression tests (Dallmeier et al., 2005). Classes are
ranked high when they exhibit many call sequences
that only occur in failing runs. These rankings turned
out to perform well in a controlled experiment that
used the NanoXML parser as our main subject. In
this experiment, we ranked the classes from 33 ver-
sions of NanoXML, each with a single known fault.

e In 36% of all test runs, the faulty class was ranked
right at the top. On average, a programmer using
our technique must inspect 21% of the executed
classes before finding the fault. All rankings were
noticeably better than random rankings.

e Comparing sequences with k = 1 is equivalent to
ranking classes based on coverage—another tech-
nique for fault localization (Jones et al., 2002).
This performed worse than rankings based on se-
quences with k& > 2 and suggests that call se-
quences provide useful extra context.

2.3 Implementation and Performance

Our implementation of call sequence sets uses Java
bytecode instrumentation (Dahm, 1999) to observe
the basic events that form a trace. For efficiency, we
compute call sequence sets directly in memory, rather
than computing a trace first.

The runtime overhead of tracing varies widely.
A computationally intense application—like a ray
tracer—that instantiates an extreme number of ob-
jects, can be slowed down by a factor of 100 or more.
A factor between 10 and 20 is more typical for appli-
cations that also perform some I/O operations. The
memory overhead is typically below a factor of two,
except for applications that instantiate many (small)
objects. While the runtime overhead may sound pro-

hibitive, it is comparable to a simpler coverage anal-
ysis with JCoverage (Morgan, 2004).

3 Related Work

Reiss and Renieris (2001) survey the representation
of control flow as they are used for dynamic analy-
sis. Considerable prior work exists about the com-
pression of traces and call trees, in particular using
automata and grammars (Larus, 1999). None of these
techniques exhibit set semantics and thus the aggre-
gation and comparison of traces is more difficult than
with call sequence sets.

Call sequence sets were inspired by the work of For-
rest et al. (1997) about intrusion detection. They use
n-grams of system calls to detect abnormal behavior
of Unix processes under attack.

4 Conclusions

Call sequence sets are a light-weight data structure to
dynamically capture control flow. Their set semantics
facilitate an incremental or layered analysis: sequence
sets from sub components (like objects or classes) may
be aggregated to represent the control flow of larger
entities. Set semantics also facilitate relative analysis
of control flow: sequence sets from different compo-
nents or program runs are meaningful to compare.

Call sequence sets generalize the notion of coverage:
they indicate the calls executed as well as the temporal
context of each invocation.
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