
Language Independent Abstract Metamodel for Quality Analysis and
Improvement of OO Systems

Mircea Trifu and Peter Szulman
FZI Forschungszentrum Informatik

Karlsruhe, Germany
{mtrifu, szulman}@fzi.de

1 Introduction

Existing software systems need to change with time, to
adapt to expanding business needs by evolving into state-
of-the-art IT solutions. During the long life cycle of a soft-
ware system, continuous changes often lead to the degra-
dation of its structure. Due to its high complexity, the
maintenance of such anomalous structures represents a
great challenge nowadays. However this process can be
greatly supported by several analysis and transformation
techniques providing (semi-automatic) detection and cor-
rection of design flaws in existing systems.

Our work within the QBench1 project aims to make a
step forward from classical quality analyses and propose
appropriate corrective measures in the form of source-code
transformations which, if applied, would lead to a bet-
ter software system. Simply put, while traditional quality
analysis techniques try to find problems in source code, the
QBench vision is to try and find solutions for these prob-
lems.

Both quality analyses and transformations can be ex-
pressed efficiently on models which have a higher level of
abstraction than the source code of the legacy system itself.
Such models contain only the relevant artifacts and not the
entire syntactic details, and they could be constructed from
the source code using fact extractors. This paper contains
a brief introduction to the structure and the semantics of
the QBench System-model [4] as it is defined by its meta-
model.

The metamodel features support for four OO languages
(C++, Java, Delphi, C#) as well as mixtures of these lan-
guages (heterogeneous projects written in more than one
language),

The following sections present the main parts of this
metamodel and discuss some of the design decisions taken.

2 Structure of the Language Independent
Metamodel

Given the two main usage scenarios we have in QBench
(quality assessment and quality improvement) as well as
to ease the understanding of our metamodel, we have men-
tally divided it into two parts: the analysis metamodel and
the transformation metamodel. The analysis metamodel

1http://www.qbench.de

*

*

1

target

*

* *

*

Root

Package

<<interface>>

Referenceable

Class

Field

Method

Statement

Access

Figure 1: Simplified view of the language independent
metamodel

contains the abstractions and operations needed to express
state-of-the-art quality analyses, while the transformation
metamodel is an extension of this analysis core, which
adds transformation capabilities to the model. The follow-
ing sections present the two parts in greater detail.

3 The Analysis Metamodel

The goal of the analysis metamodel is to allow the specifi-
cation of quality analyses in a language independent man-
ner. Our approach for building this language independent
abstract metamodel was to take a comprehensive view of
all the important features found in the main four OO lan-
guages (Java, C++, C# and Delphi) while at the same time
unifying similar concepts such as C++ or C# namespaces
andJava packages. The result was a more powerful meta-
model which also allows the specification of language spe-
cific quality analyses (that refer to established language id-
ioms) in addition to quality analyses expressible on a meta-
model representing the common core of these languages.

Our metamodel can also accommodate heterogeneous
projects (projects written in several languages), which un-
til now could only be analyzed for one language at a time,
usually using different tools having not necessarily the
same capabilities. Such projects are a reality in today’s in-
dustrial environment and are increasingly present as tech-
nologies such asCORBA, COM+ or more recently.NET
are already widely used.

When it comes to implementing quality analyses, the



language independence of our metamodel pays off again.
Since most of these analyses are described in the literature
in abstract terms, using metrics, heuristics and quantified
violations of well-established OO design principles which
apply to all OO languages, it makes sense to have only one
implementation for these quality analyses (aGod-Class[3]
in Java is also aGod-Classwhen translated to C++, C#

or Delphi). As for the language specific quality analyses
(violations of language idioms), they can be easily imple-
mented because the abstract OO language described by our
metamodel is a superset of each of the individual OO lan-
guages.

Figure 1 shows a simplified view of the major abstrac-
tions contained in our metamodel. A complete presenta-
tion of our metamodel can be found in [4]. The novelty of
our metamodel lies in its finer granularity represented by
an abstract statements layer. This layer enable us to imple-
ment all the metrics and heuristics as dynamic queries on
the metamodel as opposed to precomputed values during
fact extraction. As we will see in the next section, dynamic
metrics are an absolute requirement for the transformation
metamodel.

Moreover, our analysis metamodel integrates code du-
plication information in a natural, intuitive way by map-
ping code clones to program elements (each clone instance
is represented by a list of duplicated abstract statement
objects). To our knowledge, our approach to integrate
code clones is unique in this respect and has the advan-
tage that clone information may be easily used to refine the
other structural analyses as opposed to the separate anal-
ysis step typically allowed by text-based code duplication
techniques.

4 The Transformation Metamodel

The goal of the transformation metamodel is to allow sim-
ulation of common code transformations on the model in
order to predict the impact of the real transformations on
the internal quality of the software system. As previously
mentioned, the aim ofQBenchis to find not only quality
related problems in source code, but also appropriate solu-
tions for these problems and produce a list of source-code
transformations which, if executed, would lead to better
internal quality of the system.

Simulating transformations on a language independent
transformation metamodel has the advantage that these
transformations can be expressed unitary for all languages
in abstract terms, without the huge syntactic overhead that
could make the complexity of such an undertaking ex-
plode. In most cases, the actual implementation of the
above mentioned abstract language independent transfor-
mations for the various languages differ only in these lan-
guage specific syntactic details that have negligible impact
on the inner quality of software systems.

In addition, it is a well-known fact that source-to-source
transformations on some of the OO languages (e.g. C++,
Delphi) are extremely difficult to implement partly due to
some syntactic constructs such aspointerswhich make it
very difficult and sometimes impossible to guarantee cor-

rectness of these transformations. Other OO languages, on
the other hand, such as Java or C# benefit from extensive
support for source-to-source transformations and refactor-
ings. Our approach makes it possible to offer solutions to
improve inner quality even for languages without source-
to-source transformation support, where transformations
could be carried out by hand.

Simulating transformations means that the abstract
transformations are carried out directly on the transfor-
mation model. Due to the dynamic nature of the metrics
and heuristics implemented on the analysis metamodel the
model will always reflect the current structure and quality
attributes of the system.

For example, when trying to correct a problem such
as Long method[2], the obvious solution is to split up
the method and move some of the statements to another
method (existing or newly created). When simulated
on our transformation metamodel, such a transformation
would result in automatic updates of the complexity and
size measurements of the method in question, as well as
the coupling measurements between the class containing
the method and the classes referenced in the movedState-
mentobjects through the attachedAccessobjects. See fig-
ure 1 for more details.

5 Conclusion and Future Work

In this work we have defined a metamodel for quality anal-
ysis and transformation simulation. Its main advantage is
that it lies on a higher abstraction level than an AST, thus
hiding unnecessary complexity, while at the same time is
fine-grained enough to allow the specification of state-of-
the-art quality related analysis as well as to simulate with
sufficient accuracy various transformations. The meta-
model also makes it possible to propose a list of transfor-
mations for languages where automatic source-code trans-
formations are not yet available. It also saves implemen-
tation effort when a new language is desired. One only
need to implement a language specific mapping and a fact
extractor for the given language. We have already imple-
mented fact extractors for Java, C++ and Delphi, while C#
is still in the works.

References
[1] CompoBench-Team. Compobench-metamodell (untere

schichten). CompoBench Milestone METAMOD, Jul. 2003.
[2] M. Fowler. Refactoring. Improving the Design of Existing

Code. Addison-Wesley, 1999.
[3] A. J. Riel. Object-Oriented Design Heuristics. Addison-

Wesley, 1996.
[4] M. Trifu, P. Szulman, and V. Kuttruff. Qbench-

systemmetamodell. Project Deliverable, Dec. 2004.


	1 Introduction
	2 Structure of the Language Independent Metamodel
	3 The Analysis Metamodel
	4 The Transformation Metamodel
	5 Conclusion and Future Work

