
Automated Strategy Based Restructuring of Object Oriented Code

Adrian Trifu
FZI Forschungszentrum Informatik, Karlsruhe

trifu@fzi.de

Abstract

Software decay is a phenomenon that plagues all software
systems in general, and object oriented systems in partic-
ular. Existing approaches fail to effectively address this
problem because of their informal nature. We overcome
the main deficiencies of other approaches, with the help
of two innovations: encapsulation of correlated structural
anomalies and machine processable patterns for restructur-
ing. Our method allows unprecedented levels of automa-
tion in the decision making process involved in restructur-
ing large object oriented systems.

1 Introduction

Since the adoption of the object oriented paradigm on a
large scale in the software industry, companies (especially
early adopters) have been facing increasing problems re-
lated to design drift [5], also known as software decay
[3]. The causes are numerous, and have been analyzed
thoroughly in the literature [5]. Besides its obvious scien-
tific importance, the fight against design drift also has an
important economic aspect. Restructuring decaying legacy
systems is still a mostly manual, extremely costly and risky
process. Finding ways to increase predictability, reliabil-
ity as well as raising the level of automation, will lead to a
sharp decrease in maintenance costs for all companies that
own such systems.

Existing approaches fail to address this problem, be-
cause of two main reasons. The first reason is the exis-
tence of a conceptual gap between what we can measure
in a system (symptoms), and the causing factors (the prob-
lems). Most analysis techniques rely on software metrics
or compositions of metrics that can bring certain abnor-
mal attributesof design artifacts to light. While these ap-
proaches may give a suggestive picture about the general
state in which a system is, it is insufficient to tell us what
needs to be done to improve the system. In other words,
we know that something with a certain part of our system is
wrong (e.g. a class is large, non-cohesive with lots of code
duplication), but we neither know what exactly caused the
identified anomalies, nor how to improve the situation.

The second main deficiency of other approaches is the
lack of machine-usable and reusable reengineering exper-
tise. Once we have successfully carried out a series of
complex transformations that lead us to a better design,
we do not have the possibility to formally record and later
(perhaps automatically) reuse our knowledge. In other
words, the processis and remainspurely manual, to be

carried out by experts. What is needed is a sort of formal
patterns that describe what to do when problems occur in
the design.

In the following section, we present a new method that
successfully addresses these problems. Finally, we give a
short overview of related research and conclude, by pro-
viding some insight into future work.

2 Strategy-based restructuring method

If we use a medical analogy, the key to an effective treat-
ment is an exact diagnosis of the disease, based on its
characteristic symptoms. Structural problems in object
oriented systems are “diseases” that manifest themselves
through a characteristic constellation of structural anoma-
lies, also known as “bad smells” [3]. This clear distinc-
tion between problem and symptom is new in the litera-
ture. Until now, terms such as “bad smells”, “design flaws”
[6] and “structural problems” [2] have been generally
used interchangeably. However, we make a clear distinc-
tion betweenstructural problemsand structural anoma-
lies, which we define as follows: structural problems are
the concretization of a design decision made by the de-
signer/developer, which contradicts some commonly ac-
cepted design practices, with respect to well determined,
reoccurring situations. Structural anomalies on the other
hand, are the manifestation of structural problems in the
source code of the system (the bad smells). They usu-
ally occur together in constellations that suggest the pres-
ence of a common underlying problem. For example, the
problem that we callabused inheritancerefers to an abu-
sive use of the inheritance mechanism with the purpose
of reusing the implementation of the superclass. Typical
bad smells, or anomalies induced by this problem include:
refused bequest [7], high inter-subsystem couplings, over-
looked abstraction, etc. The characteristic anomaly fin-
gerprint of a problem can contain mandatory, as well as
optional anomalies.

We have currently defined seven structural problems
and their corresponding anomaly fingerprints, used for
their diagnosis:conceptualization abuse, collapsed class
hierarchy, collapsed method hierarchy, orphan sibling in-
terfaces, abused inheritance, outsourced functionalityand
ignored abstraction.

Having well defined (concrete) problems, we can de-
scribe their solutions much more easily and precisely as
for bad smells. We do this in so calledrestructuring strate-
gies. In order to shield restructuring strategies from the



(at this stage) unnecessary complexities related to correct-
ness of transformations, as well as programming language
particularities, they are specified in terms of an abstract
model [11]. In other words, a restructuring strategy is a
formally specified algorithm that operates on an abstract
model in order to determine a sequence of refactorings that
eliminate a problem instance. For example, the problem
calledconceptualization abuse, means that two or more,
non-cohesive concepts have been packed into a single class
of the system. The anomaly fingerprint for this problem
includes the presence of the anomalies: God class (also
known asthe blob), several possible data classes (satel-
lite classes of the god class), feature envy in methods of
the god class, etc. The restructuring strategy forconcep-
tualization abusefirst determines envious methods in the
abusive class, and moves them to other appropriate host
classes. It then computes the cohesive clusters of data and
behavior (concepts) and extracts corresponding classes out
of the central class. All of these steps are described in
terms of transformations on an abstract model of the sys-
tem. When the problem is successfully removed on the
model, a list of “real” refactorings is generated and trans-
mitted to a code transformation tool, called Inject/J [10],
which under user supervision, transforms the source code
of the system.

The mappings between the anomaly fingerprint and the
corresponding structural problem is determined by the di-
agnosis strategy, and the mapping between problem and
solution is given by arestructuring strategy. The two types
of strategies encapsulate all necessary knowledge to diag-
nose and respectively eliminate structural problems in ob-
ject oriented systems.

3 Related work

Significant attempts towards automatic detection of struc-
tural anomalies have been made in [2, 6]. Concerning code
refactorings as the low level mechanism to perform safe
source code transformations we refer the reader to [3].
With regard to the so called ”bad smells” and solutions
defined in [3], our approach distinguishes itself in the fact
that we treat bad smells as symptoms for higher level prob-
lems and that we describe formal, machine-processable
“recipes” for the correction of these problems.

Along the same lines go [9] and [12], where a num-
ber of best practices in reengineering large object oriented
systems is identified and formulated in the form of reengi-
neering patterns and anti-patterns respectively. They have
the disadvantage that they are strictly informal, because
their purpose is to disseminate best practices, and not to be
a support for automated restructuring.

In [4], opportunities of inserting design patterns to
places in the source code where such patterns are missing,
or present in a distorted form, are searched for. Although
widely accepted as good practice, design patterns are not
mandatory, therefore their absence is not necessarily prob-
lematic.

A more recent optimization approach for structure im-
provement, with good first results, can be found in [8]. The

technique is based on applying genetic programming on a
model in order to “evolve” the structure of a system. By
operating on a simplified model, the process runs without
human intervention. The result is a recommended, optimal
structure of the model (with respect to the cost function de-
fined), which needs to be implemented in the real system.

Significant work concerning tool support for automated
introduction of design patterns has been done in [1]. Con-
cerning low-level tool support for generic code transfor-
mations, we refer the reader to [10].

4 Conclusion

We presented a new method for the restructuring of large
object oriented systems. The method builds on two im-
portant innovations: the encapsulation of constellations of
structural anomalies into structural problems, and formally
specified, reusable restructuring strategies that effectively
support the decision making process of restructuring ac-
tivities by employing modelling techniques. This method
is a significant improvement over previous purely symp-
tomatic approaches, which relied on informal descriptions
of bad smells. We currently have seven restructuring
strategies specified and significant parts of the infrastruc-
ture implemented. Their fingerprint definitions rely on
about 25 different structural anomalies, taken from liter-
ature. Our current main priority for the near future is to
bring the implementation into a state that allows us to val-
idate the approach on real systems.

References
[1] M. Ó. Cinńeide and P. Nixon. A methodology for the au-

tomated introduction of design patterns. InProceedings of
the ICSM, 1999.

[2] O. Ciupke. Problemidentifikation in objektorientierten
Softwarestrukturen. PhD thesis, Uni. Karlsruhe, 2001.

[3] M. Fowler. Refactoring. Improving the Design of Existing
Code. Addison-Wesley, 1999.

[4] Y.-G. Guéh́eneuc and H. Albin-Amiot. Using design pat-
terns and constraints to automate the detection and correc-
tion of inter-class design defects. InProceedings of the
TOOLS 39, pages 296–305, 2001.

[5] Holger Baer et al. The FAMOOS object–oriented reengi-
neering handbook, 1999.

[6] R. Marinescu. Measurement and Quality in Object-
Oriented Design. PhD thesis, ”Politehnica” University of
Timişoara, 2002.

[7] A. Riel. Object–Oriented Design Heuristics. Addison–
Wesley, first edition, 1996.

[8] O. Seng and G. Pache. Search based structure improve-
ment. InProceeding of SET, 2004.

[9] Serge Demeyer et al.Object Oriented Reengineering Pat-
terns. Morgan Kaufmann, 2003.

[10] The Inject/J team. The Inject/J website.
http://injectj.sourceforge.net.

[11] M. Trifu, P. Szulman, and V. Kuttruff. Das QBench Sys-
temmetamodel. Technical report, FZI Forschungszentrum
Informatik, Karlsruhe, 2004.

[12] William J. Brown et al. AntiPatterns: Refactoring Soft-
ware, Architectures, and Projects in Crisis. John Wiley &
Sons, 1998.


	1 Introduction
	2 Strategy-based restructuring method
	3 Related work
	4 Conclusion

