
Nondeterministic Coverage Metrics as Key Performance Indicator
for Model- and Value-based Testing

David Faragó (farago@kit.edu)
Karlsruhe Institute of Technology, Institute for Theoretical Computer Science

Abstract. Assessing the testing or software development process by only using KPIs can easily be mis-
leading. A better solution is a paradigm shift to value-based software engineering, which integrates value
considerations into software engineering and offers a broader and more technical view on KPIs. Coverage
metrics are such a technical view and a very helpful KPI.
This paper combines value-based testing and model-based testing of nondeterministic systems and
introduces new coverage metrics for this. Therewith, the quality of test suites is raised and value-based
testing gets strongly supported, e.g., by KPIs derived from nondeterministic coverage metrics and better
requirements-based and risk-based testing.

Keywords. Value-based software engineering, value-based testing, key performance indicators, re-
turn on investment, model-based testing, coverage metrics, nondeterminism

1 Introduction

Testing already consumes up to 50% of the software
development costs [1], so it needs to be operated
and managed efficiently on all hierarchy levels. To
enable sensible decisions, especially in higher man-
agement, conscise information is needed. Key Perfor-
mance Indicators (KPIs) deliver such: They are mea-
sures which evaluate the progress and degree of perfor-
mance of a particular activity from certain viewpoints.
So the value of all software development activities is
mapped onto some measures. But conscisely quanti-
fying complex systems is very difficult. Hence often
wrong KPIs or too few dimensions are considered (cf.
[2]), or interpreted wrongly (e.g. work in progress, cf.
[16,14]). So they mislead management into bad deci-
sions. In testing, for instance, often defect detection
percentage (i.e. bugs fixed / total bugs found) is used
without factoring in the severity of bugs. Hence it cul-
tivates (especially in combination with the KPI lines
of code per day) quick and dirty coding and fixing
many little bugs afterwards. More meaningful KPIs,
e.g., return on investment (ROI) (cf. Section 2.2),
sprint burndown (cf. [15]) or coverage metrics (cf. Sec-
tion 3), require more context, i.e., a broader, deeper,
more technical view on software engineering.

Hence Section 2.2 will give this broader view by
introducing value-based testing. It will motivate look-
ing into the following technical details: Coverage met-
rics (Section 3), model-based testing (MBT) and non-
determinism (Section 4), and finally, how and which
coverage metrics help for model-based testing and for
KPIs (Section 5). Section 6 gives a summary.

2 Value-based Software Engineering

2.1 Introduction

Value is more than money, it is the relative economic
and utilitarian worth. With this general definition, ev-
eryone strives in his decisions and actions to maximize

his (personal) value. When KPIs are being used, busi-
ness value of all development and testing activities are
mapped onto some measures, so that higher manage-
ment can sensibly steer the software development de-
partment. In contrast, value-based software engineer-
ing (VBSE) integrates business value considerations,
mainly by prioritization, traceability and risk consid-
erations, into the full range of software engineering
principles and on all hierarchy levels. It offers means to
better downstream value to all parties. Therefore, ev-
eryone involved – manager, executive, analyst, process
engineer, software engineer, and tester – better under-
stands the implications of his own decision. Thus all
actions and decisions are monitored and synchronized
to maximize the corporate values made explicit - they
are enhanced to being value-based (VB). Hence com-
mon mischiefs, e.g., development only striving for el-
egant design while marketing only valuing large func-
tionality, are avoided.

So this paradigm shift investigates the value of all
software development activities, how to measure, in-
crease and enforce it. For this, the VBSE Agenda
(cf. [4,2]) integrates value considerations into the soft-
ware development process and into management ac-
tivities closely related to software development: It cov-
ers VB requirements engineering, VB architecting, VB
design and development, VB verification and valida-
tion (V&V), e.g., via risk-based and VB testing (cf.
Section 2.2), VB planning and control, e.g., by multi-
attribute planing and decision support (cf. [2]), VB
risk management, e.g., using agile methods (cf. [10]),
and VB quality management. These elements reinforce
each other and are enhanced by the contributions of
this paper.

2.2 Value-based Testing

The value of test cases is usually a Pareto distribu-
tion, i.e., 80% of the value is covered by 20% of the
test cases (cf. [6]). Hence a value-neutral approach,

which treats each artifact (e.g., path, scenario or re-
quirement) equally important, is not efficient. Value-
based testing aligns the test process and investments
with the given value objectives by prioritizing the test
basis and testware (e.g., requirements, test cases and
bugfixes).

That way, testing can maximize its return on in-
vestment (ROI), i.e., the KPI (benefits - costs)/costs.
The cost of testing (cf. [13]) can be partitioned into:
– the costs of conformance, for achieving quality,

which includes prevention costs (e.g., for extended
prototyping and modeling tools) and appraisal
costs (e.g., for test execution).

– the costs of non-conformance, incurred because of
a lack of quality, which includes internal failure
costs (e.g., for defect fixing) and external failure
costs (e.g., for technical support).

The benefit of testing are:
– either short-term, e.g., saved rework because of

early bug detection and reduction of uncertainty
in planning by assessing risks;

– or long-term, by detecting the strength and weak-
ness of the development process.

Hence, a good ROI in testing means that costs of con-
formance + internal failure costs ≤ savings in external
failure costs (cf. [3]). VB testing mainly reduces costs
of conformance by prioritization. Using the more for-
mal MBT approach (cf. Section 4) helps to detect bugs
early, so internal failure costs are reduced. Addition-
ally, using nondeterminism can enhance bug preven-
tion, i.e., reduce prevention costs, since the models can
be more abstract and designed even earlier. Coverage
metrics (cf. Section 3) improve test selection, result-
ing in fewer and more meaningful tests and therefore
also decreasing the KPI execution time per test case,
i.e., the appraisal costs.

The following practices are essential for putting
value-base testing into effect:
– Requirements-based testing, to assure that the re-

quirements are completely and accurately covered.
Since they capture the business values agreed
upon, this helps in VB testing. Requirements can
be prioritized by associating weights to them.
The best implementation of requirements-based
testing is deriving black-box tests from the re-
quirements (cf. [2]). This can be done automat-
ically using MBT with the requirements included
in the specifications. This automation also em-
powers traceability from tests to the original re-
quirements, as well as early verification of re-
quirements. The important prioritization of re-
quirement tests can be put into effect by appro-
priate coverage criteria, which can factor in the
weights of the requirements. Hence requirements-
based testing is risk-oriented.

– Risk-based testing deals with risk exposure, which
is (probability of loss) · (size of loss). These values
are not only useful to prioritize tests, but give im-

portant feedback - not only at the end of testing,
but permanently as a KPI. It indicates, besides
the progress of the project, areas that potentially
contain errors and need to improve. By knowing
the probability that a bug occurs, and its resulting
loss (via weights), its fix can be prioritized. Sec-
tion 5 will show how MBT with coverage metrics
and quantification of nondeterminism implements
risk-based testing.

– Iterative and concurrent testing copes with chang-
ing requirements and risks, caused by insights
from development and testing, or from changing
business values. Fast and flexibly responding to
these changes is very important and the cause for
most modern development processes being highly
iterative. MBT’s conscise models support fast and
flexible changes (cf. [10]). Nondeterminism also
helps since it enables leaving undecided points
open in the model (e.g., returning a Collection
and later refining it to a specific List). This avoids
unnecessary rework and reduces the initial effort,
hence further increasing the ROI.

3 Coverage Metrics

Coverage metrics are the percentage of the code or
the (functional or requirements) specification that the
executed tests have covered so far. Depending on
what artifacts should be covered, different metrics are
formed, e.g., state(ment), transition, Modified Condi-
tion/Decision, or LCSAJ coverage(cf. [17,8]).

These metrics originate from white-box testing, but
since formal specifications contain control flow, data
and conditions, they can be applied at specification
level, too. If the source code is present, it can still be
used for additional coverage metrics.

A coverage metric is a KPI for testing: It can be
used in management to decide whether and where
quality assurance needs to improve and as exit crite-
rion, either agreed upon in the test plan, or demanded
by a required certificate (like DO178B). During devel-
opment, a coverage metric informs about the progress,
afterwards it raises confidence.

But a coverage metric can also have deep technical
influence: When tests are being generated (manually
or automatically), each test case should contribute as
much as possible towards the goal of reaching the de-
sired coverage. So the coverage metric helps prioritiz-
ing for test selection (cf. Section 5). Hence guidance
by coverage metrics in test generation is absolutely
value-based.

4 Model-based Testing of Nondeter-
ministic Systems

4.1 Introduction
Model-based testing (MBT) originates from black box
conformance testing, i.e., to check that the system un-
der test (SUT) conforms to its functional specification.

If this reference behavior is given in a formal language,
MBT can automatically generate conformance tests.
The formal specification is often a Labelled Transition
System (LTS). Nondeterminism helps in specifying re-
quirements, cf. Section 4.2. Section 4.3 describes the
possible methods that MBT can apply.

4.2 Nondeterminism

Complex (e.g. distributed) SUTs (seemingly) behave
nondeterministically, i.e., react varyingly after apply-
ing a fixed stimulus, e.g., occasionally with an excep-
tion. The reason is lower levels, such as the operating
system and network, which are not under the testers
control and too complex to model and monitor.

A tester can cope with this by also using non-
determinism when specifying the SUT, to cover all
possible behaviors, for instance with the test code
if (NetworkException) {} else {}.

Nondeterminism can be specified more concisely
when MBT with formal specifications are used. It
helps to model more efficiently via abstraction, i.e.,
describing several behaviors without having to care
which one occurs (e.g. what data is present in the un-
derlying database).

The possible input choices, i.e., the input transi-
tions from a given state, are the nondeterminism that
is controllable by the tester. Uncontrollable nondeter-
minism, i.e., nondeterminism of the SUT, is
– either multiple different outputs from one state,
– or unobservable nondeterminism of the LTS itself:

multiple identical labels from one state, or internal
transitions. These are often the result of compo-
sition.

4.3 Model-based Testing Methods

To generate tests, MBT
1. traverses paths through the graph of the specifi-

cation. These paths are considered as test cases:
The SUTs inputs on the paths are the stimuli, i.e.
drive the SUT, the outputs are the oracles, i.e.
check that the SUT behaves conformly.

2. If the test cases are too abstract for execution,
they are refined to the SUT’s technical level.

3. These tests are then executed.
4. The results are finally analyzed, leading to the

verdicts pass, fail and inconclusive (or the like).
MBT methods can be categorized depending on how
they intertwine these steps:

Off-the-fly MBT (cf. [5]) only performs the first
two steps. Since a priori test generation does not know
which nondeterministic choices the SUT will take, all
choices have to be considered.

On-the-fly MBT (cf. [5,18,7,8]), uses the other ex-
treme of strict simultaneity, i.e., all four steps are per-
formed in lockstep for each single transition. Hence
the above deficiencies are no longer present, but guid-
ance is very weak.

Lazy on-the-fly MBT 1, takes the happy medium: It
executes subpaths of the model lazily on the SUT, i.e.,
only when there is a reason to, e.g., when a test goal,
a certain depth, an inquiry to the tester, or some non-
deterministic choice of the SUT is reached. Hence the
method can backtrack within subgraphs of the model
(cf. [9]). While backtracking, the method can harness
dynamic information from already executed tests, e.g.,
nondeterministic coverage criteria (cf. Section 5).

5 Coverage Metrics for Model-based
Testing of Nondeterministic Sys-
tems

In MBT, coverage metrics help to guide the traversal
through the specification graph, such that the newly
generated tests really contribute to the desired cover-
age, i.e., probe new behaviors. For the different nonde-
terministic behaviors, test segments must be executed
repeatedly. But how often? Some behavior might (al-
most) never be reached. This section looks at modified
coverage criteria that are suited for nondeterminism
of the SUT: Section 5.1 for deterministic LTSs, Sec-
tion 5.2 also for nondeterministic LTSs. For further
details, see [11].

5.1 For Deterministic LTSs
Uncontrollable nondeterminism via outputs is still
present. Current tools, e.g., Spec Explorer, simply re-
executes test segments a constant k times. So counting
how often a state s (with s ∈ S, the set of all states)
is visited is sufficient to put this into effect. But k
might be too often or too seldom. The method does
not give any information about the nondeterminism,
and hence can also not adapt to it.

A solution that is still simple but more revealing
is to measure the coverage of nondeterminism of the
SUT by what the author defines as n-choices cov-
erage metrics: They measure the percentage of vis-
ited states with multiple outputs (so called nonde-
terministic states) where at least n output choices
have been traversed: |{nondeterministic s ∈ S| at
least n different output transitions of s have been
traversed}/|{nondeterministic s ∈ S|s has at least
n output transitions}. This is a generalization of
[12]. So 1-choices measures how many nondetermin-
istic states have been visited (and left via an out-
put transition). 2-choices checks how many nonde-
terministic states really behave nondeterministically
in the SUT. all-choices := |{nondeterministic s ∈
S| all different output transitions of s have been
traversed}/|{nondeterministic s ∈ S} measures to
what degree the specified output really occurs in
the SUT, i.e., how much underspecification we have
(cf. [9]). As in classical coverage metrics, there are
many subsumptions, e.g., 100% transition coverage

1 currently developed by the author and funded by
Deutsche Forschungsgemeinschaft (DFG)

6⇐⇒ 100% all-choices 6⇐⇒ 100% 2-choices 6⇐⇒ 100%
1-choices.

Although these coverage metrics give information
about nondeterminism and can be used as exit cri-
teria, they are in general not informative enough to
efficiently guide the state space traversal such that
nondeterministic states are visited optimally often for
high coverage of the possible nondeterministic choices.
The best solution is quantification of nondeterminism:
By counting for all relevant artifacts (e.g., states and
transitions) the number of times they are traversed
or used (similar to the usual code instrumentation in
white-box testing), the relevant probabilities can be
approximated, e.g., P [t] = count(t)/count(s) that a
transition t = s→ s′ is taken in s.

These probability distributions over the nondeter-
ministic output choices can be used to compute the
probability of reaching some state or requirement, by
interpreting the transition system as Markov chain.
The missing probabilities for the input labels are im-
plicitly set to one since their choice is under the con-
trol of the MBT tool. Thus coverage metrics can factor
in both probabilities and the weights (e.g., P [reaching
requirementi] · Weight[requirementi]) when used for
guidance. These values are not only useful for guid-
ance, but also as approximation for other probabil-
ity values, such as reaching some error, probability of
loss or risk exposure. (The size of loss can be inferred
from the weights of the requirements.) . Hence they
can be used as KPI and for requirements-based and
risk-based testing, e.g., to reduce planning uncertainty
and to guarantee lower variance of quality.

5.2 For Nondeterministic LTSs

This section investigates whether the solutions from
the last section can be generalized to nondetermin-
istic LTSs. Since nondeterminism of the LTS is not
(immediately) observable, we are not in a single state
at any one time during traversal, but in a set of possi-
ble states Scurrent ⊆ S. Hence, coverage criteria mea-
sure only possibly covered artifacts (such as states or
transitions), since maybe a different path was taken.
Therefore, coverage metrics are much less meaningful
and rather complex (e.g., non-monotonic, cf. [11]). So
using the metric as guidance can be very misleading.

Updating computations later on when choices of
nondeterminism of the LTS become observable is very
complex. Hence we try to deciding instantly by also
quantifying nondeterminism of the LTS. For this,
Scurrent is replaced by the probability distribution
Pcurrent over S. Pcurrent is updated by computing ran-
dom walks. This requires a transition probability ma-
trix. If we do not have probability values given for the
nondeterminism of the LTS (e.g., from previously test-
ing the components individually), we need to guess
them for our matrix, e.g., equidistributedly. Pcovered

gives the probability that a state or other artifact is
covered. It can be computed using Pcurrent.

So for nondeterministic LTSs, quantification is un-
fortunately very costly and possibly too rough an ap-
proximation. Since the benefit is large (cf. Section
5.1), this current research topic is still worth looking
into.

6 Summary

Many aspects of VBSE are supported by MBT of non-
deterministic systems with coverage criteria: Tracabil-
ity back to the weighted requirements, prioritization,
and KPIs. These are obtained by new coverage met-
rics, e.g., quantified nondeterminism. The KPIs not
only improve guidance, but offer valuable informa-
tion, e.g., risk exposure. For nondeterminism of the
LTS, quantification is intricate and a current research
topic.

References
1. Boris Beizer. Software testing techniques (2nd ed.). Van Nos-

trand Reinhold Co., New York, NY, USA, 1990.
2. Stefan Biffl, Aybke Aurum, Barry Boehm, Hakan Erdogmus,

and Paul Grnbacher, editors. Value-Based Software Engineer-
ing. Springer, Berlin, 2006.

3. Rex Black. Managing the Testing Process: Practical Tools
and Techniques for Managing Hardware and Software Test-
ing. John Wiley & Sons, Inc., NY, USA, 2nd edition, 2002.

4. Barry Boehm. Value-based software engineering: reinventing
earned value monitoring and control. SIGSOFT Softw. Eng.
Notes, 28, March 2003.

5. Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin
Leucker, and Alexander Pretschner. Model-based Testing of
Reactive Systems, volume 3472 of LNCS. Springer, 2005.

6. J. Bullock. Calculating the value of testing. Software Testing
and Quality Engineering, pages 56–62, June 2000.

7. Margus Veanes et al. Model-based testing of object-oriented
reactive systems with spec explorer. In Formal Methods and
Testing, pages 39–76. Springer, 2008.

8. David Faragó. Coverage criteria for nondeterministic systems.
testing experience, The Magazine for Professional Testers,
pages 104–106, September 2010.

9. David Faragó. Improved underspecification for model-based
testing in agile development. Volume P-179 - Proceedings of
the Second International Workshop on Formal Methods and
Agile Methods, September 2010.

10. David Faragó. Model-based testing in agile software devel-
opment. In 30. Treffen der GI-Fachgruppe Test, Analyse
& Verifikation von Software (TAV), Testing meets Agility,
Softwaretechnik-Trends, 2010.

11. David Faragó. Nondeterministic coverage criteria for model-
based testing. Technical Report 2011-7, Department of Com-
puter Science, University of Karlsruhe, 2011.

12. Gordon Fraser and Franz Wotawa. Test-case generation and
coverage analysis for nondeterministic systems using model-
checkers. In ICSEA, page 45. IEEE Computer Society, 2007.

13. F. M. Gryna. Quality and Costs, Juran’s Quality Handbook.
McGraw-Hill, 1999.

14. KPI Library. http://kpilibrary.com/home/. (November 2010).
15. Roman Pichler. Agile Product Management with Scrum: Cre-

ating Products That Customers Love. Addison-Wesley, 2010.
16. Jeff Smith. The K.P.I. Book. Insight Training & Development

Limited, 2001.
17. Andreas Spillner and Tilo Linz. Basiswissen Softwaretest:

Aus- und Weiterbildung zum Certified Tester – Foundation
Level nach ISTQB-Standard. dpunkt, 3. edition, 2005.

18. Mark Utting and Bruno Legeard. Practical Model-Based Test-
ing: A Tools Approach. Morgan Kaufmann, 1 edition, 2007.

	Nondeterministic Coverage Metrics as Key Performance Indicator for Model- and Value-based Testing
	eserved@d = *@let@token David Faragó (farago@kit.edu)

