
A Method to Systematically Improve the Effectiveness and
Efficiency of the Semi-Automatic Migration of Legacy Systems

Masud Fazal-Baqaie, Marvin Grieger, Stefan Sauer
Universität Paderborn, s-lab – Software Quality Lab

Zukunftsmeile 1, 33102 Paderborn

{mfazal-baqaie, mgrieger, sauer}@s-lab.upb.de

Markus Klenke

TEAM GmbH

Hermann-Löns-Straße 88, 33104 Paderborn

mke@team-pb.de

1 Introduction

Legacy systems, e.g. applications that have been de-

veloped using a 4th generation language (4GL), need to

be modernized to current technologies and architectural

styles in order to ensure their operation in the long run.

In practice, a true modernization cannot be achieved by

fully automated transformation. As a result, a custom

migration tool chain transforms only parts of the legacy

system automatically, while a manual completion of

the generated source code is still necessary. Two dif-

ferent roles are responsible for these activities, carried

out incrementally. A small group of reengineers con-

ceptualizes and realizes the migration tool chain while

a larger group of software developers completes the

generated source code by reimplementing missing

parts. Thus, the overall effectiveness and efficiency of

the migration comes down to optimizing the generated

source code as well as the instructions on how to man-

ually complete it.

In this paper, we describe a method to systematically

improve the generated source code and the correspond-

ing instructions by exchanging structured feedback be-

tween developers and reengineers. We also summarize

first experiences made with this method, which is cur-

rently applied in an industrial project [1].

2 Feedback-Enhanced Method

The Reference Migration Process (ReMiP) [2] provides

a generic process model for software migration. It

states that, first, the reengineers define a migration

path, a corresponding tool chain as well as migration

packages for the application. Then, the developers iter-

atively process the migration packages, completing the

generated source code provided by the reengineers.

Experiences they make during this completion can be

used to improve the effectiveness and efficiency of it-

erations to follow. Communicating these experiences

with the group of reengineers enables them to improve

the generated source code, however, ReMiP does not

describe such activities.

Our method refines ReMiP by describing when, by

whom, and how feedback is collected and integrated

during each iteration. Figure 1 shows the method mod-

eled in SPEM [3]. It groups the activities performed by

the software developers into the activity named Devel-

opment Activity and the activities carried out by the

reengineers into the activity named Reengineering Ac-

tivity. In each iteration, first the developers carry out

their activity and then the reengineers carry out theirs.

During the Development Activity, the Manual Reim-

plementation Instructions and the Generated Source

Code are taken as input, while the Feedback Entry List

is generated as output. Conversely, the Feedback Entry

List is an input for the Reengineering Activity where

the reengineers adapt the instructions and the generated

code according to the feedback. In the following sec-

tions, we will discuss some important aspects of the ac-

tivities described.

2.1 Reflection during Development

As depicted in Figure 1, we extended the usual Trans-

formation & Test Activities with a specific Reflection

task that is performed in parallel to them and that has

the Feedback Entry List as output. Simplified, in

SPEM-Terminology a task is a precisely described unit

of work while an activity contains a nested structure of

various activities (and tasks). The intention of the Re-

flection task is to collect viable feedback that can be

used by a reengineer to improve the Generated Source

Code as well as the Manual Reimplementation Instruc-

tions for subsequent iterations of the migration. Focus-

ing on the right information minimizes the effort to col-

lect it while maximizing the productivity gains pro-

duced by the made improvements. In order to help the

developer with the Reflection task, we created a Feed-

back Collection Guidance that helps him to decide

what information is viable. He creates a feedback entry

for the reengineers by updating the Feedback Entry

List, whenever a task he carries out is characterized by

any of the following descriptions: (1) the task deals

with fixing a problem, e.g. instructions given are not

valid, (2) the task is cognitively simple, e.g. copy and

paste is performed, or (3) the task is repetitive. There-

by, each feedback entry contains the following infor-

mation: (1) Description: What needed to be done?,

(2) Frequency/Duration: How often was it done?,

(3) Location: Which artifacts were affected?, and

(4) Type: What type of activity was performed (e.g.

create, change, delete, lookup)?.

2.2 Feedback Evaluation during Reengineering

In the Reengineering Activity, the reengineer has to

evaluate the given feedback and derive actions to adapt

the instructions or tool chain and therefore the generat-

ed source code accordingly. As depicted in Figure 1,

we introduced a specific Required Actions Evaluation

task that is performed initially. Not all feedback entries

have the potential to make the migration more efficient.

Thus, each feedback entry is systematically assessed

using the Feedback Assessment Guidance. For each

feedback entry, a reengineer has to understand and

sketch the potential actions in order to address it. In our

case study, we identified two possible actions that may

result: Instruction adaptation or tool chain adaptation.

The instructions as well as the tool chain can either be

revised or extended. Revision is necessary in the pres-

ence of a flaw, e.g. a faulty transformation, to increase

the effectiveness. In contrast, extension may increase

the efficiency by increasing the amount of the generat-

ed code or providing missing information in the docu-

mentation. As a result, an automatic conversion may be

realized. The identified potential actions are added to

the Action List.

Figure 1: Overview of the Feedback-Enhanced Method

After potential resulting actions have been determined,

the reengineer needs to prioritize them within the exist-

ing Action Prioritization Activity. In order to do this, he

has to evaluate the estimated effort in relation to the es-

timated benefit. As a result, he may also decide to ig-

nore the action and thus the related feedback entry.

Otherwise, the prioritized actions based on the feed-

back entry list are treated in the same way as other pro-

ject actions, e.g. they are managed in a project-wide is-

sue tracking system.

The prioritized Action List is the input of the Tool

chain & Instruction Adaption Activity, where the

scheduled actions are performed and as a result the mi-

gration artifacts are updated.

3 Related Work

As software migration has been an active area of re-

search for quite some time, several methods have been

proposed [2]. To the best of our knowledge, no empha-

sis has been set on how to systematically exchange

feedback between the developers and the reengineers in

order to increase the effectiveness and efficiency of the

overall process. This topic is also underrepresented in

experience reports. For example, in [4] and [5], case

studies are described which indicate, that some feed-

back in terms of experiences during the development

was used to adapt and extend the tool chain. However,

no details are given.

4 Preliminary Results and Future Work

This method was developed in an industrial context. It

has been applied in the pilot migration of a legacy ap-

plication system consisting of about 5 KLOC written in

PL/SQL and 2 K declarative elements defined in a 4th

generation language (4GL). The application was mi-

grated by a team of two reengineers and two develop-

ers. Albeit being a considerable small project, applying

the described method already supported the systematic

improvement of the overall efficiency and effective-

ness. We believe that this method can also be applied

in large-scale migration projects. As development ac-

tivities are often outsourced in these projects, the in-

formation gap between the groups of reengineers and

developers is much bigger, such that applying our

method should be even more beneficial.

5 Literature

[1] Grieger, M.; Güldali, B.; Sauer, S.: Sichern der

Zukunftsfähigkeit bei der Migration von Legacy-

Systemen durch modellgetriebene Softwareent-

wicklung. In Softwaretechnik-Trends, vol. 32,

no. 2, pp. 37-38, 2012.

[2] Sneed, H. M.; Wolf, E.; Heilmann, H.;: Software-

Migration in der Praxis: Übertragung alter Soft-

waresysteme in eine moderne Umgebung, dpunkt

Verlag, 2010.

[3] Object Management Group: Software & Systems

Process Engineering Meta-Model Specification,

2008.

[4] Fleurey, F. et al.: Model-driven Engineering for

Software Migration in a Large Industrial Context.

In Proc. of MODELS 2007, pp. 482–497, 2007.

[5] Winter, A. et al.: SOAMIG Project: Model-Driven

Software Migration Towards Service-Oriented Ar-

chitectures. In Proc. of MDSM 2011, vol. 708 of

CEUR Workshop Proceedings, p. 15–16, 2011.

