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Program comprehension of stripped executables is
hard because neither modules and function names, nor
any other structural information are available. We in-
troduce an algorithm that, using morphological opera-
tions, highlights fan-in, fan-out, and module coupling
in the adjacency matrix of the control flow graph and
thus allows initial orientation at function level.

This paper introduces the structures of interest and
our algorithm, and analyzes the yaboot bootloader.

1 Control Coupling
Stripped Executables

Analysis  of

A general problem of analyzing stripped executables
is that very little information is available. Specifically,
a disassembler can only help to regroup the code to
functions, but on its own cannot generate useful func-
tion names, or recreate modules of the code. A first
orientation in the code needs a method that is in-
dependent of debug information, execution traces, or
known libraries and operating systems.

In this paper we present an algorithm that recon-
structs information about functions of interest, mod-
ules, and their control coupling and thereby gives an
overview of the executable. An exploitable property
for such an algorithm is that linkers keep the func-
tions and object files in the sequence they were given
during compilation and thereby encode such informa-
tion into the program’s addresses and its control flow
graph (compare [2]). Our algorithm mines the control
flow graph for fan-in, fan-out, and reference clusters
between functions using morphological operations on
the graph’s adjacency matrix and presents them in
a comprehensive plot, so that the analyst can get a
rough overview of the executable.

While alternative visual coupling analyses exist,
they are usually applied to structures extracted from
high-level code [1] or use trace information [7].

Table 1: Interpretations of Visual Structures

Structure Interpretation

Local Control Flow
Module

Module Coupling
Fan-In/Library
Helper Function
Fan-Out/Dispatch
Dispatch Function

Diagonal

Box/Triangle on Diagonal
Box/Triangle not on Diag.
Global Vertical

Vertical near Diag.

Global Horizontal
Horizontal near Diag.
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Figure 1: Control Flow Plot for yaboot /fcl15

2 Visual Analysis of yaboot

Figure 1 shows an example of the yaboot bootloader
for PowerPC from the Fedora Core 15 Linux distri-
bution with rough row (A..O) and column (1..14) no-
tations for orientation. KEach horizontal row in the
plot represents one of the about 350 functions, each
column tracks control accesses in 128 byte steps. We
describe the structures of interest and their interpre-
tation:

A1..D1 Big green horizontal line: A setup/dispatch
module with large fan-out.

B2..C8 Several red vertical lines: A library module
with high fan-in.

G1..G14 Long red vertical lines: Basic library func-
tions with high fan-in.

J9..N14 Different shapes near diagonal, little cou-
pling in J1..N8 and A9..114: External library with
good separation.

Manual inspection using information from debug
symbols confirms the interpretation: Al is a module
that contains an interactive shell, B2 is a wrapper
module to the openfirmware (BIOS like), G1 is the C
library and J9 is the ext2fs library.

3 Control Flow Plots and Visual Struc-
tures
The goal is to create an algorithm that produces a

control flow plot, like the one shown in the example
above. A control flow plot is based on a binary adja-
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Figure 2: Separated Results for yaboot/fcl5

cency matrix of control accesses (similar to [6]), where
both axes represent numerically ordered program ad-
dresses. To represent function sizes, outgoing accesses
are grouped per function (horizontal) and incoming
accesses (vertical) use bins in the size of an average
basic block.

In such a plot different key visual structures (see
Table 1) can be mined and highlighted that provide
semantics for an analyst. The diagonal line is caused
by intraprocedural control flow, like jumps and next
instructions, and its steepness represents the functions
sizes. Modules can be identified by their intra-module
coupling, which shows up as boxes or triangles next to
the diagonal line. Coupling between modules shows
up as boxes or triangles disconnected from the diago-
nal. Setup functions with high fan-out will produce a
scattered horizontal line, helper and library functions
with high fan-in will leave a similar but vertical line.

The scope of functions and modules can be esti-
mated by their access lines’ length as well as their
relative closeness to the diagonal. Longer lines corre-
late to broader access across modules and shorter lines
near the diagonal identify intramodular functions.

4 Morphological Highlighting of Struc-
tures

We provide a simple algorithm to highlight the struc-
tures in the image using basic image processing oper-
ations like erosion, dilation, opening (erode + dilate),
and closing (dilate + erode) from mathematical mor-
phology. An erosion operation leaves only pixels in
the image, where a structuring element fully fitted in
the original image. A dilation adds pixels wherever
a structuring element aligned with a pixel from the
original image has a pixel.

A custom script in IDA Pro [3] extracts the control
flow graphs as plots, which are then processed using
the octave image package [5].

Listing 1 shows the code used to highlight the struc-

H = imdilate(imerode(imclose(J,ones(hlen,1)),
ones(hlen/3,1)) ,ones(1,vlen/10));

V = imdilate(imerode(imclose(J,ones(1,vlen)),
ones(1,vlen/3)) ,ones(hlen/10,1));

B=H+V+ J;

s = ones(blen/3,blen/3);

B = imclose(imdilate(imclose(B,s)-B,s),s);

Listing 1: Line and Block Emphasis Algorithm

tures in the plot. The separated results (see Figures 2a
to 2c¢) are composed in an additional step to form the
result image (see Figure 1). The line detection in both
horizontal and vertical direction first uses closing on
the image with a long line as structuring element to
create initial lines, then erodes with a shorter element
to keep only long lines. The line is finally broadened
by a dilation with an orthogonal structure.

To create the boxes and triangles in the image, the
original image is combined with the detected lines and
then closed using a block structuring element to form
a blurred version. Single dots and lines are removed
by subtracting the combined image, and the resulting
gaps are removed in one dilation step. The remaining
structures in the image are again closed to produce
the final area information.

5 Summary and Future Work

The algorithm works independently of the architec-
ture and therefore supports all the processor mod-
ules in IDA Pro. The prototype implementation was
run on a testsuite [4] of several embedded executables
as well as executables from the CPU2006 benchmark.
Manual checks of the results are consistent with debug
as well as reverse-engineered information. The next
steps are to integrate the implementation in a reverse
engineering workflow and to expand the evaluation in
both quality and quantity.
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