Software Performance Anti-Patterns
Observed and Resolved in Kieker

Christian Wulf
Software Engineering Group
Kiel University
24098 Kiel, Germany
chw@informatik.uni-kiel.de

ABSTRACT

Software performance anti-patterns describe bad-practice so-
lutions for particular problems. They help in sensitizing
software engineering to such situations. In this paper, we
focus on anti-patterns of monitoring and dynamic analysis
frameworks, such as Kieker. These frameworks typically
have high requirements on a low monitoring overhead and a
high-throughput analysis performance.

We describe three observed anti-patterns which influenced
previous versions of Kieker with a high impact on the per-
formance. Moreover, we present our solution for each of the
anti-patterns.

Categories and Subject Descriptors

D.3.3 [Language Constructs and Features]: Patterns;
E.1 [Data Structures|: Records; E.2 [Data Storage Rep-
resentations]|: Object representation

General Terms

Design, Performance

Keywords

Application Performance Monitoring, Dynamic Analysis,
Kieker Framework, Performance Anti-Patterns

1. INTRODUCTION

In software engineering, patterns are a well-known means
to capture knowledge at least since Gamma et al. [1] present
their collection of design patterns. Such patterns represent
good-practice solutions to problems which occur frequently.
Apart from that, anti-patterns [2, 6] have emerged. Anti-
patterns represent bad-practice solutions to common prob-
lems and should thus sensitize software engineers to such
solutions. A subset of anti-patterns are performance anti-
patterns [3]. They focus on solutions to problems which have
a negative impact on the performance of software system.

In this paper, we present three performance anti-patterns
(PAA) which we observed in the monitoring and dynamic
analysis framework Kieker [4]. All address problems with
the serialization and deserialization of monitoring records.
For each of them, we describe its context, its problem, and
a solution which is faster and in some case even less complex.

The paper is structured as follows. In Section 2, we de-
scribe a performance anti-pattern which comprises the par-
allelization of sequential dependencies. Afterwards, in Sec-
tion 3, we describe a performance anti-pattern which cov-

Wilhelm Hasselbring
Software Engineering Group
Kiel University
24098 Kiel, Germany
wha@informatik.uni-kiel.de

monitoring node analysis node

string
registry

. le
string
registry lv.

string registry records

Figure 1: Parallel transfer of monitoring records and string
registry records in Kieker

monitoring node analysis node

- monitoring records -
string | __ o __,| string

registry registry

string registry records

Figure 2: Our proposed sequential transfer of monitoring
records and string registry records

ers the reflection-based record reconstruction. In Section 4,
we describe a performance anti-pattern which addresses the
problem of an exception-based buffer underflow detection.
Finally, we conclude this paper in Section 5.

2. PAA#1: PARALLELIZING SEQUENTIAL
DEPENDENCIES

Context. In Kieker 1.10, we find the following implemen-
tation for transferring monitoring records from the moni-
toring node to the analysis node via TCP. Each node runs
two threads as illustrated by Figure 1. Below, we describe
the serialization tasks of the two threads of the monitoring
node. The threads of the analysis node perform analogous
deserialization tasks.

The first thread of the monitoring node continuously re-
ceives the monitoring records from the monitoring controller
and serializes them as a byte sequence to a buffer. If the
buffer is full, the thread sends its content to the analysis
node via TCP. Afterwards, the thread clears its buffer and
continues with receiving monitoring records..

To reduce the monitoring overhead and to increase the
throughput, Kieker compresses string attributes of moni-
toring records. For this purpose, the monitoring controller
maintains a string registry which holds a map of string/i-
dentifier entries. Once a new string attribute is recognized
while serializing a monitoring record, a new unique 4-byte
identifier is generated. The string and the identifier are then

stored in the string registry. Hereupon, the string registry
creates a new string registry record, copies the string and the
identifier into it, and finally sends it to the second thread.
The second thread performs the same procedure as the first
thread, however, for string registry records.

Problem Description. When the first thread of the analy-
sis node deserializes a monitoring record, it needs to replace
each string identifier by its corresponding string. For this
purpose, it looks up the string identifier in a string registry
which is similar to the one used on the monitoring node.
If the second thread has not yet received or registered the
corresponding string registry record, the first thread blocks.

Compared with a single-threaded solution, this implemen-
tation has the following three disadvantages: First, two TCP
connections are established: one for transferring monitor-
ing records and one for transferring string registry records.
Thus, an administrator needs to maintain and to observe
two open ports which can lead to a higher maintenance ef-
fort and a higher security risk. Second, the threads on each
node must synchronize with each other via the string reg-
istry. Thus, a higher communication effort can be perceived.
Third, the first thread waits for the second thread if a moni-
toring record is being deserialized before its string attributes
have been registered in the string registry.

In summary, the deserialization of monitoring records de-
pends on their string attributes. Nevertheless, Kieker 1.10
tries to parallelize this intrinsically sequential dependency.

Our Solution. We propose an approach that handles the
transfer of both the string registry records and the moni-
toring records in one single thread per node. We call these
threads the writer thread and the reader thread, respectively.
This approach, as illustrated by Figure 2, requires the follow-
ing two changes in the source code: First, we added to each
record type a new method called registerStrings which
registers all string attributes of the record with the passed
string registry. Second, we adapted the string registry so
that it does not send a new string registry record to another
thread. Instead, it sends the string registry record to the
writer thread. The writer thread then writes the record to
the buffer.

In this way, we ensure that all string registry records are
transferred before its corresponding monitoring record is se-
rialized. Moreover, this version requires one open port only
and avoids an unnecessary synchronization overhead. Fi-
nally, the reader thread does not block anymore on the anal-
ysis node except for an empty buffer.

This anti-pattern is a special case of the anti-pattern Un-
necessary Processing [3] with a focus on parallel processing.

3. PAA#2: REFLECTION-BASED RECORD
RECONSTRUCTION

Context. In Kieker 1.10, we find the following implemen-
tation for reconstructing a monitoring record from a TCP
input stream. First, a software buffer is filled with a fixed
number of bytes from this stream. This buffer serves as
a cache to reduce the amount of accesses to the applica-
tion programming interface of the operating system. Then,
the following algorithm is executed as long as the buffer
has enough bytes left. Figure 3 shows the corresponding

—

—_

int classId = buffer.getInt();

recordClassName = stringRegistry.get(classId);

record = AbstractMonitoringRecord .
createFromByteBuffer (recordClassName ,
buffer , stringRegistry);

Figure 3: Reflection-based record reconstruction in Kieker
1.10

int classId = buffer.getInt();

recordClassName = stringRegistry.get(classId);

recordFactory = cachedRecordFactoryCatalog. get (
recordClassName) ;

record = recordFactory.create(buffer ,
stringRegistry);

Figure 4: Factory-based record reconstruction in Kieker 1.11

source code. The TCP reader component first reads a 4-byte
string identifier from the buffer (Line 1). The corresponding
string represents the fully qualified class name (FQCN) of
the record type which is about to be reconstructed (Line 2).
The TCP reader then passes the FQCN, the buffer, and the
string registry to a generic record factory which constructs
a new instance of the correct record based on the passed
information (Line 3).

Problem Description. The generic record factory utilizes
Java’s Reflection API to search for a record type based on
its FQCN in the class path. If the record type was found,
the factory stores the FQCN and the reflective constructor
of the record type in a map which serves as a cache. In
this way, the factory only needs to search for each record
type once. Subsequently, the factory again uses the Reflec-
tion API to invoke the reflective constructor with the buffer
and the string registry as parameters. Finally, the record’s
constructor reads its attributes from the buffer and thus re-
turns a correctly reconstructed instance. Hence, although
the constructor of each record type is cached, it must still
be invoked using the Reflection API.

This implementation has the following major disadvan-
tage: Java’s Reflection API in general and the reflective
invocation of a constructor in particular are slow. The in-
vocation of a constructor via Java’s keyword new is always
faster than its reflective counterpart.?

In summary, Java’s Reflection API should not be used in
frequently occurring situations to avoid performance prob-
lems. Nevertheless, Kieker 1.10 makes use of it to recon-
struct monitoring records.

Our Solution. We propose an approach that uses the ab-
stract factory pattern [1] and a naming convention. Instead
of using a generic record factory, each record type is assigned
a dedicated record factory. This record factory implements
a factory method that statically creates and returns a new
instance of the corresponding record type via Java’s keyword
new. The name of the factory consists of the name of the
record type and the suffix Factory.

"http://docs.oracle.com/javase/tutorial/reflect/
index.html

http://docs.oracle.com/javase/tutorial/reflect/index.html
http://docs.oracle.com/javase/tutorial/reflect/index.html

Figure 4 shows the adapted source code. Now, the TCP
reader searches for and caches the record type’s factory in-
stead of the record type (Line 3). Afterwards, the resolved
factory is used to deserialize and instantiate a new record
(Line 4).

Since programming a record factory for each record type
by hand is cumbersome, we extended the generator of Kieker’s
Instrumentation Record Language.? Now, the generator
does not only generate the record types, but it also gen-
erates the record type’s factory.

This anti-pattern is not covered by any of the anti-patterns
described by Smith et al. [3].

4. PAA #3: EXCEPTION-BASED BUFFER
UNDERFLOW DETECTION

Context. In Kieker 1.11, we find the following implementa-
tion for detecting and reacting on a buffer underflow. Fig-
ure 5 shows the corresponding source code. First, the cur-
rent position of the buffer is saved for later use (Line 2).
Then, the record reconstruction process starts by invoking
the method reconstruct (Line 3). The record identifier is
read from the buffer to resolve the corresponding record fac-
tory. Afterwards, the factory invokes the record’s construc-
tor which in turn deserializes each of the record’s attributes
one by one from the buffer. Whenever the buffer does not
contain enough bytes for the next data element, it throws a
BufferUnderflowException signaling an abort of the record
reconstruction. Hereupon, the TCP reader catches the ex-
ception (Line 4) and triggers a refill of the buffer (Line 5).
Finally, it continues with the record reconstruction from the
previously saved buffer position (Line 6).

Problem Description. The most CPU and memory con-
suming part of this implementation strategy lies in resolv-
ing and storing the current stacktrace in the newly created
exception. For example, if we assume a buffer size of 8192
bytes and a mean record size of 40 bytes, then a buffer under-
flow exception is thrown each 204th record reconstruction.
If we consider that Kieker achieves a throughput of more
than one hundred thousand records per second [cf. 5], 500
exceptions are thrown each second. In general, the smaller
the buffer size, the more frequently exceptions are thrown,
and the slower is the overall performance.

Our Solution. We propose an approach that completely
avoids creating and throwing buffer underflow exceptions.
For this purpose, we use the buffer’s capability to check how
many bytes are remaining within the buffer. The record re-
construction process works as follows. Besides saving the
buffer’s current position as previously (Line 1), the TCP
reader now also checks within the method reconstruct (Line
2) whether the buffer has four bytes remaining for the record
identifier. If remaining, the TCP reader resolves the record
factory and invokes its new method getRecordSizeInBytes.
The method’s return value represents the size of the record
which is about to be reconstructed by the factory. If this
size is smaller than the bytes remaining in the buffer, then
the record is successfully reconstructed (Line 3). Otherwise,

*https://github.com/research-iobserve/
instrumentation-language/wiki

N O Uk W N

O T W N~

try {
// save buffer’s current position
reconstruct (buffer);

} catch (BufferUnderflowException e) {
// refill buffer
// reset buffer’s position

}

Figure 5: Exception-based buffer underflow detection in
Kieker 1.11

// save buffer’s current position
boolean success = reconstruct (buffer);
if (!success) {

// refill buffer

// reset buffer’s position
}

Figure 6: Boolean-based buffer underflow detection in

Kieker 1.12

reconstruct returns false indicating that the buffer needs
to be refilled (Lines 4-5).

Our solution replaces the exception-based buffer under-
flow detection by checking the buffer’s remaining bytes be-
fore actually reading from the buffer. We avoid to trigger
the exception and return a boolean value instead. In this
way, our approach is faster, especially for small buffer sizes.

This anti-pattern is a special case of the anti-pattern Ez-
cessive Dynamic Allocation [3] with a focus on exceptions.

S. CONCLUSION

In this paper, we presented the following three perfor-
mance anti-patterns which we observed in previous versions
of Kieker: (1) Parallelization of sequential dependencies, (2)
reflection-based record reconstruction, and (3) exception-
based buffer underflow detection. For each of the perfor-
mance anti-patterns, we explained its problems and gave a
better solution.

References

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object-oriented
Software. Prentice Hall, 1995.

[2] A. Koenig. Patterns and antipatterns. In The Patterns
Handbooks. Cambridge University Press, 1998.

[3] C. U. Smith and L. G. Williams. More new software per-
formance antipatterns: Even more ways to shoot yourself
in the foot. In Proc. of the Int. CMG Conference, 2003.

[4] A. van Hoorn, J. Waller, and W. Hasselbring. Kieker: A
Framework for Application Performance Monitoring and
Dynamic Software Analysis. In Proc. of the ICPE, 2012.

[5] J. Waller, F. Fittkau, and W. Hasselbring. Application
performance monitoring: Trade-off between overhead re-
duction and maintainability. In Proc. of the Symposium
on Software Performance, 2014.

[6] M. Wooldridge and N. R. Jennings. Pitfalls of Agent-
oriented Development. In Proc. of the AGENTS, 1998.

https://github.com/research-iobserve/instrumentation-language/wiki
https://github.com/research-iobserve/instrumentation-language/wiki

	Introduction
	PAA #1: Parallelizing Sequential Dependencies
	PAA #2: Reflection-based Record Reconstruction
	PAA #3: Exception-Based Buffer Underflow Detection
	Conclusion

