
Mining of Comprehensible State Machine Models

for Embedded Software Comprehension

Wasim Said, Jochen Quante

Robert Bosch GmbH, Corporate Research
Renningen, Germany

{Wasim.Said, Jochen.Quante}@de.bosch.com

1 Introduction

Embedded legacy software contains a lot of expert
knowledge that has been cumulated over many years.
Therefore, it usually provides highly valuable and in-
dispensable functionality. At the same time, it be-
comes more and more complex to understand and
maintain. Mining of understandable models, such as
state machines, from such software can greatly sup-
port developers in maintenance, evolution and reengi-
neering tasks. Developers need to understand the soft-
ware in order to evolve it. Existing state machine
mining approaches are based on symbolic execution,
which means enumeration of all paths. This quickly
leads to path explosion problem. One effect of this
problem on state machine mining is that the extracted
models contain a very high number of states and tran-
sitions, and therefore are not useful for human com-
prehension. This means that additional measures to-
wards comprehensibility of extracted state machines
are required. To reach this goal, we introduced user
interaction measures that can reduce the complexity
of extracted state machines by reducing the number
of states and transitions [2]. However, the complexity
of boolean expressions that constitute the guards of
state machines remains high. Therefore, we also pre-
sented an approach for complexity reduction of these
guards to be understood by humans [4]. In this pa-
per, we give an overview of these approaches. Also,
we report on our controlled experiments which show
that the approaches are highly effective in making ex-
tracted state machines understandable, and these un-
derstandable models in turn do help in comprehension
of complex legacy software.

2 User interaction measures

To reduce the number of states and transitions in
the mined state machines, we defined user interac-
tion measures that enable the user to select only the
relevant information in code and abstract away every-
thing irrelevant [2]. For example, the user can select a
subset of state variables and extract a model of them
instead of having a model for all state variables in
code. The user can also select the interesting states
of these variables or define new states and then get
a model that describes the function’s behaviour with

respect to these states. In addition, the user can add
constraints on the variables to have a state machine
model under a specific scenario.

3 Reduction of guards’ complexity

A transition condition (guard) is defined as the con-
dition that must be fulfilled to trigger a transition
between two states. Based on path enumeration, our
guards are formed by the disjunction of all path condi-
tions of the feasible paths between two states. There-
fore, the guards of the extracted state machines from
real-world systems are very complex. Moreover, using
the above interaction measures to reduce the num-
ber of states and transitions makes those guards even
more complex: The information that was previously
contained in the state invariants is not lost, but it is
moved into the guards. Our goal is to provide com-
prehensible state machines for human experts, and
this certainly includes comprehensible guards. For
this reason, we first applied two standard techniques
for boolean reduction to reduce the guards complex-
ity [1], which are binary decision diagrams (BDDs)
and heuristic based logic minimization. Both ap-
proaches led to a significant reduction of guards com-
plexity, but the reduced guards were still not compre-
hensible for humans in too many cases.

Therefore, we conducted a case study with indus-
trial developers to check the human comprehensibil-
ity limits of boolean expressions in disjunctive normal
form [1], as our guards have this form. The result
was that the comprehensibility limits lie between five
and eight conjunctions (expressions connected with
OR operator). According to these limits, about 50%
of our reduced guards were still not understandable
for humans.

We thus developed another approach for reducing
the guards’ complexity. The approach is based two
main observations:

1. The conditions explicitly exclude infeasible paths,
which makes them more complex than necessary.
We remove this complexity by masking infeasible
paths from the conditions. This is done by adding
infeasible path conditions to guards in cases when
it helps to reduce the guard’s complexity. The
infeasible path can never be taken, anyway.



S1

S2

S3

(A ∧ C ∧¬D ) ∨

(A ∧ B ∧¬C ∧ D)

(¬A ∧ B ∧ C) ∨

(B ∧ C ∧ D) ∨

(¬A ∧ B ∧¬C ∧¬D)

(¬B ∧ C ∧¬D) ∨

(¬B ∧¬C ∧ D) ∨

(¬A ∧¬C ∧¬D) 

(a) Original guards

S1

S2

S3

(A ∧ C ∧¬D ) ∨

(A ∧ B ∧¬C ∧ D)

(B ∧ C ∧ D) ∨

(¬A ∧ B ∧¬D)
(¬B ∧ C ∧¬D) ∨

(¬B ∧¬C ∧ D) ∨

(¬A ∧¬C ∧¬D) 

(b) Reduction of only Espresso

S1

S2

S3

3:TRUE

2:

(A ∧¬D ) ∨

(B)

1:

(C ∧ D) ∨

(¬A ∧ B)

(c) Reduction of Espresso with
transition priorities

Figure 1: The effect of using transition priorities on
guards understandability [4].

2. The expressions repeat over and over in the con-
ditions, as they are the result of aggregating con-
ditions during symbolic execution due to nested
or sequential program structures. We deal with
this issue by introducing transition priorities and
exploiting them to simplify conditions.

Our approach combines heuristic logic minimiza-
tion with transition priorities [4]. Transition priori-
ties indicate the order in which the transitions’ guards
have to be evaluated, so that transitions that emerge
from a common source state each get a distinct pri-
ority number. The transition condition with the low-
est number is evaluated first (i. e., priority one is the
highest). Only when it does not hold, the transition
with the next higher number is checked. Our algo-
rithm determines the most effective order of priori-
ties, while additionally leveraging infeasible paths as
“don’t care” combinations.

Figure 1 presents an example of reducing the orig-
inal guards (Fig. 1(a)) – once with only Espresso (a
popular heuristic logic minimizer, Fig. 1(b)), and then
with applying our combination of Espresso and tran-
sition priorities (Fig. 1(c)). It can clearly be seen that
the reduced guards with transition priorities are more
understandable than those without priorities. Our
case study on the reduction of 151 guards with and
without transition priorities showed that our approach
(with transition priorities) achieves 99% reduction on
the number of conjunctions and makes 91% of the re-
duced guards understandable, whereas using Espresso
alone (without priorities) makes only 47% of the same
guards understandable for humans.

4 Guards’ comprehensibility

We evaluated the proposed approach of reducing
guards complexity by conducting a controlled exper-

iment with 24 participants. The goal was to check
whether the participants can answer questions about
real guards faster and with fewer errors. The subject
state machines in the experiment were extracted from
three embedded C functions from industrial systems.
The guards were reduced twice: once with Espresso
only, and then with our approach using transition pri-
orities. The participants had to answer concrete ques-
tions to extract relevant knowledge from the guards.
Then, we evaluated the results with respect to the re-
quired time and the correctness of the answers. The
result showed that when the tasks were performed on
transitions with priorities, 1) the processing time was
always shorter on average, and 2) the number of cor-
rect answers was always higher. This indicates that
guards with priorities are an adequate representation
for human understanding of mined state machines.

5 The effect of mined state machines
on program comprehension

For a quantitative evaluation of our interactive ap-
proach, we conducted a controlled experiment [3] to
answer the research question: Do interactively ex-
tracted state machines make understanding of com-
plex embedded code more effective? In this experi-
ment, 30 participants had to answer comprehensibil-
ity questions about matching the given specification
of two real industrial control functions with the imple-
mentation in C code. The independent variable was
the availability of the extracted state machines, and
the dependent variables were 1) the time needed to
finish all tasks, and 2) the correctness of the results.
The experiment confirmed that when extracted state
machines are available, the share of correct answers
increases and the required time to solve the tasks de-
creases significantly. This means that mined state ma-
chines do in fact help in program understanding.

6 Conclusion

Based on our controlled experiments, we can conclude
that our extensions for state machine mining, namely
interaction and guard reduction, make it a useful ap-
proach for realistic and helpful support for program
comprehension, software reengineering and evolution.

References

[1] W. Said, J. Quante, and R. Koschke. On state machine
mining from embedded control software. In Proc. of
34th ICSME, pages 163–172, 2018.

[2] W. Said, J. Quante, and R. Koschke. Towards inter-
active mining of understandable state machine models
from embedded software. In Proc. of 6th MODEL-
SWARD, pages 117–128, 2018.

[3] W. Said, J. Quante, and R. Koschke. Do extracted
state machine models help to understand embedded
software? In Proc. of 26th ICPC, 2019.

[4] W. Said, J. Quante, and R. Koschke. Towards un-
derstandable guards of extracted state machines from
embedded software. In Proc. of 26th SANER, 2019.


