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While we argued in [5, 4] that code quality needs
to take context into account, there is now software
that demands a really different quality culture like we
would be entering another planet. Jupyter, to be pre-
cise: A “Jupyter Notebook is [a] web application that
allows you to create and share documents that con-
tain live code, equations, visualizations and narrative
text.”1 It consists of text and code cells. The content
of code cells is sent on demand to a Python session,
executed and the output inserted below the cell. We
will approach the quality of notebooks from the per-
spective of communicative code and design patterns.

Communicative Code Let us discuss three as-
pects of how a developer may communicate through
code that are special for notebooks or mathematical
code: 1) Imports should be at the beginning of a file
so that a reader can immediately recognize what the
code requires to run and what the reader needs to
know to understand the code. So, if a reader finds
an import somewhere in-between, he has to readjust
his expectations while reading. And, a missing de-
pendency might only be found after long running cal-
culations are already completed. But, couldn’t there
be a message behind a late import? We found note-
books covering a main topic, e.g. an involved cal-
culation, and some minor side topics, e.g. a perfor-
mance evaluation or a visualization. By postponing
imports for the side topics to later sections the note-
book emphasizes that these imports are not relevant
for the main topic. 2) Shorter identifier names take
longer to comprehend (see [2] and the discussion of
related work therein) so that longer identifier names
are preferable. The research indicates that the pos-
itive effect of longer names stems from their ability
to facilitate the understanding of their meaning. In
mathematical contexts there are short identifiers that
have well established meaning, so that there is at least
reason to believe that the established short identifiers
outperform longer unfamiliar identifiers in terms of
recognizability.2 3) Domain Driven Design has elabo-
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1https://jupyter.org/
2Interesting research questions arise from the constraints

within the programming language compared to common math-

rated the benefits of keeping model and code close to
the terminology of the domain. As long as develop-
ers and domain experts use the same language, they
can efficiently collaborate to evolve and improve the
system. Even within the mind of one developer it is
preferable to have as little translation effort as pos-
sible. Approaching the domain of mathematics and
statistics with this mindset, we recognize that there
are implementation variants that are closer to the do-
main than others. Compare for example the following
three lines to the formula for the ordinary least squares
solution (XT X)−1XT y:

np.dot(np.dot(la.inv(np.dot(X.T, X)), (X.T)), y)
la.inv(X.T.dot(X)).dot(X.T).dot(y)
(X.T * X).I * X.T * y

All three variants are valid implementations. The
third sticks out as it is almost a verbatim translation
of the original formula. This quality might or might
not outweigh performance or numerical criteria.3

Design Patterns The notion of a design pattern
being a solution to conflicting forces in a context (see
e.g. [1, S. 1.1]) turns out to be helpful for the design
of notebooks. The context of a calculation presented
as a linear narrative leads to solutions that differ sub-
stantially from solutions for other kinds of software.
1) Function Exemplification: Forces: Notebooks
present code and its result in a linear sequence, yet
the result of a function definition is a defined function
and no immediate output. Self defined functions (let
alone objects) are therefore used much less frequently
in notebooks than in other software. Still, they are
helpful for internal reuse and to give structure to a
longer calculation. Solution: For functions without
side effects, short runtime and easy to provide param-
eters it is possible to illustrate the use of the func-

ematical notations: a) Should Greek variable names be used if
they are common in maths? b) As statisticians use ŷ for estima-
tors for y, should a Unicode variable name be used to represent
ŷ in the code, or y_hat (representing “ŷ” representing “esti-
mated y”), or y_estimated or y_est (immediately representing
“estimated y” but ignoring the established notation)? Aspects
of cognitive psychology as well as pragmatic aspects of editing
effort play a role in this question.

3For a few more details we like to refer to our notebook “Or-
dinary Least Squares Optimization” at https://p3ml.github.
io/ and the technical report on which it builds. In the third
variant X and y are matrices. Matrices are less often used than
numpy arrays as in the other two cases.
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Figure 1: A Visualization Callback allows to keep the MacQueen algorithm unconcerned with visualization.
There is only the function parameter and the calls, separated by the layout. The callback is still able to produce a visualization
consisting of small multiples (see [6, p. 67]) illustrating that the means move mostly at the start and reach plausible positions.

tion in the next cell.4 2) Updated Progress Line:
Forces: When executing the code while exploring own
approaches or reproducing results of others, it is essen-
tial to get feedback about the progress of long running
computations. But once the calculation is done, a
larger part of the progress information in the notebook
becomes uninteresting and distracting. Solution: Let
the calculation repeatedly overwrite only temporar-
ily interesting progress information in the same line.5
3) Visualization Callback: Forces: To illustrate
an algorithm, its implementation should not be influ-
enced by other concerns. In addition we often want to
show intermediate state of the algorithm. The same
implementation should be usable with or without vi-
sualization. If it is not visualized it should be fast. It
is often interesting to visualize algorithms in varying
detail and with respect to different aspects. Solution:
We pass a function as a parameter to the function that
implements the algorithm as illustrated in Fig. 1. As a
default value this parameter gets an anonymous func-
tion doing nothing.6 The algorithm function calls the
parameter function passing all potentially interesting
information in. Visualization functions that actually

4There is no technical reason not to call the function in the
same cell, yet we consider defining a function to be substantially
different from illustrating it.

5’\r’ positions the cursor at the beginning of the cur-
rent line so that progress feedback can be given via
print(’Progress: {} of {}.’.format(i, n), end=’\r’).

6The performance cost of invoking this function is below the
cost of three integer additions.

show something may have additional parameters that
can be “frozen” by creating a partial function. If the
functions were objects we would talk about a Strat-
egy Pattern with a Null Object as default strat-
egy. If the space in the cell allows, we might position
the calls further to the right so that they are pre-
attentively perceived as separated from the algorithm.

We exemplified the possibility to discuss the sub-
stantially different code quality of Jupyter notebooks.
There are many further opportunities to apply Re-
verse Engineering to notebooks. For example, note-
books that have served to explore data and calcula-
tions often need thorough clean-up before they may
be passed on to explain findings, see [3].
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