
Generating User Interface Documentation

Based on Imported Service Models

Hendrik Bünder
buender@itemis.de

itemis AG

Abstract

Modernization of software systems often starts with
replacing the graphical user interface (GUI), while the
existing services are reused. Besides specifying the
new user interface, supporting material such as sys-
tem and user documentation have to be created. The
paper introduces a model-driven approach to create
new user interfaces based on existing service defini-
tions. Additionally, it will be shown how the user
interface model can be utilized to automatically gen-
erate system and user documentation based on the
input and output parameters of the existing services
and their documentation.

1 Introduction

Software modernization is driven by the need for mod-
ern graphical user interfaces or additional frontends
such as web or mobile. Business logic and persistence,
in contrast, should be reused. Instead of reimplement-
ing the user interface in the latest technology, such as
JavaScript [5] or Angular [1], a model-driven approach
is proposed. In order to efficiently create user inter-
faces for different target technologies, abstract user
interface models are specified. Based on these models
not only the application source code for different UI
frameworks but also system and user documentation
can be generated automatically. Additionally, future
technologies can be adopted faster by implementing a
new transformation and generation process.

The user interface models are built on top of service
and data type models as introduced by Buender [2]
that represent legacy services. Based on the used data
types Layouts are specified that arrange the attributes
on the GUI. Further, the user interface models refer-
ence the services required to load and manipulate the
data shown in the GUI. Since the documentation of
data types and attributes is imported into the anti-
corruption layer model, they can be leveraged for gen-
erating the system and user documentation.

2 Specifying the Graphical User Inter-
face

As shown by Figure 1 the user interface metamodel
is built on top of the metamodel for modeling anti-

corruption layer for legacy services (shadowed in light
grey) [2].

Figure 1: Metamodel for Legacy Services and User
Interface

The Layouts are built upon existing data types that
are also used within the services. Layouts define how
the data type attributes should be represented by spe-
cific widgets on the user interface. Besides specifying
their position it is also possible to alter the widgets la-
bels or their types such as ComboBox or RadioButton-
Group for enumeration attributes. Additionally, the
purpose of the Layout is stored in a multi-language
documentation attribute.

Layouts are wrapped by Visuals that represent ei-
ther panels or whole pages. While a panel Visual
holds a direct reference to a Layout, a page Visual
references an arbitrary number of Visuals. Thereby,
multi-page applications can be specified by a combi-
nation of UI-Containers and UI-Parts. In that case,
the UI-Container represents the whole application,
while the page Visuals represent pages that reference
panel Visuals and eventually Layouts. In addition,
there are Interactions that encapsulate service calls
and make their input and output data types available
in the user interface model. Both share the parent



class UI-Part. The UI-Container bundles an arbitrary
number of Visuals and Interactions that form one
graphical user interface. Thereby, the model holds
information about the static structure of the user in-
terface as well as the dynamic parts of reading and
processing the data through existing services.

There are different parts of the model containing
documentation information. First, UI-Container, UI-
Part, Interaction and Visual all have a documentation
attribute. Second, Imported Services, Imported Data
Types, and Imported Attributes are enriched by doc-
umentation extracted from the existing implementa-
tion.

3 Generating Graphical User Inter-
face Documentation

A transformation and generation process is imple-
mented that converts instances of the metamodel pre-
sented in Figure 1 into system and user documenta-
tion.

Figure 2: Documentation Transformation and Gener-
ation Process

Figure 2 shows that the user interface and ser-
vice model are jointly transformed into a technical
user interface and service model. For every technol-
ogy that should be supported by the application, e.g.
JavaScript or Angular, a specific technical model is
created. The models are not only specific for the used
technology but also for the target device. Thereby,
the varying screen sizes e.g. for desktop and web ap-
plication can be mapped properly. Consequently, user
documentation is generated accordingly.

As shown by Figure 2 a generator eventually con-
verts the technical models into the system and user
documentation. Existing documentation was used as

a blueprint for implementing the generator templates
[4]. By replacing the dynamic parts with place hold-
ers the templates were created. The Jinja2 generator
engine [3] combines templates and technical models
to create documentation files.

The development process guideline dictates that
for each graphical user interface system documenta-
tion must be provided. The system documentation
must include all screens of the application, the wid-
gets, and their properties as well as the services called
by the GUI. Based on the technical user interface and
service models the system documentation could be
generated completely.

In addition, the software itself offers online help
to provide in-place information in the user interface
of the application. The most important part of the
user documentation is the description of each wid-
get and the expected input in terms of upper and
lower bounds, regular expressions, or documentation
strings. Since the documentation of the attributes
specified by the existing system is available within the
model it can be generated into the user documenta-
tion of the application. Additionally, since documen-
tation might change based on the type of widget or
the usage scenario, the generator interweaves legacy
with newly specified documentation. Consequently,
the user documentation can be generated completely.

4 Conclusion

It was shown how the introduced model-driven ap-
proach for user interface modeling is built upon im-
ported legacy services. Further, the paper elaborated
on how user interfaces are modeled and eventually be
transformed into user and system documentation. By
relying on existing documentation and the automatic
creation of the required files the efficiency of creat-
ing this documentation was increased. Further, the
user interface models enable an easy switch of tar-
get technologies in future by not relying on a specific
technology.

References

[1] Angular. Angular - One framework. Mobile and
desktop. url: https://angular.io/.

[2] Hendrik Bünder. “Anti-Corruption Layer Mod-
eling Introducing a Model-Driven Approach to
Integrate Legacy Software”. In: Softwaretechnik-
Trends 38.2 (2018), pp. 65–66.

[3] Jinja. Jinja2 - Welcome. 2018. url: http : / /

jinja.pocoo.org/.

[4] Thomas Stahl. Modellgetriebene Softwareen-
twicklung: Techniken, Engeneering, Manage-
ment. 2., aktual. und erw. Aufl. Heidelberg:
Dpunkt.verlag, 2007. isbn: 978-3898644488.

[5] W3C. JavaScript Tutorial. url: https://www.
w3schools.com/js/.


