
Towards a Correspondence Model for the Reuse
of Software in Multiple Domains

Sandro Koch, Frederik Reiche
{sandro.koch, frederik.reiche}@kit.edu
Karlsruhe Institute of Technology

Abstract

Modern software systems are often reused in multiple
domains and for various purposes. To allow this ambi-
guity, the connection and transformation between the
systems has to be described. In this paper we present
an idea of a Domain-Specific Language (DSL) that
enables to describe the connection and the transfor-
mation distinctly. The separation of the description
of which element is connected to which and the trans-
formation description eases future reuse and improves
the maintainability.

1 Introduction

The development of modern systems may require the
reuse of existing elements that are not explicitly de-
signed for the intended use case. These elements may
be developed beforehand or are purchased of a third
party. Independently designed interfaces are a com-
mon way to separate software components without
relying on the concrete implementation [1]. But when
the interfaces do not match, further adjustments are
necessary. The adapter pattern [2] for instance, allows
the integration of a component into a different context,
despite the mismatch of the interfaces. The need for
strategies to cope with the problem of relating ele-
ments in different contexts can also be found in other
domains of software development. For instance, Koch
et al. [3] present a model-based approach to describe
the coupling of simulations. Conversions between sim-
ulations are realized by descriptions of required and
provided data and their transformation. In their ap-
proach to provide a better end-to-end security analysis,
Kang et al. [4] bridge different vocabularies in the dif-
ferent views on the system by introducing mappings
between model elements. Seifermann et al. [5] discuss
follow-up issues in the results of their data-flow analy-
sis of software architectures. A mapping and filtering
of the results to the architectural model elements is
proposed. In the field of change propagation analysis
in Cyber-physical System (CPS) Heinrich et al. [6]
use a correspondence model to map mechanical and
electrical components of a CPS to their corresponding
variables. Busch et al. [7] utilizes the results of the
mapping in a CPS to allow a change propagation in the

control software. Heinrich et al. [8] apply a Runtime
Architecture Correspondence Model to relate monitor-
ing data to the elements of the architectural model
under analysis. In this paper we introduce a DSL that
allows to describe the correspondence independently
of the domain.

The paper is organized as follows. Section 2 outlines
the initial problem statement. Section 3 introduces the
correspondence DSL. Section 4 concludes the paper
and outlines future work.

2 Problem Statement

For this paper, we will investigate the correspondence
between two elements. A correspondence is the map-
ping of one element to another, with an optional trans-
formation. This transformation used in a correspon-
dence can be unidirectional or bidirectional. In the
simple case, one or multiple types must be converted
to another type (e.g., source: integer to destination:
float). The simple case can be solved with an adapter
which transforms the source type into the destination
type. However, if concepts or elements from different
domains need to be mapped or when there are many el-
ements need to be linked, the complexity of the adapter
increases. Thus, we distinguish two problems regard-
ing the reuse and maintainability: The first problem
(P1: Implicit Modeling) occurs, because correspon-
dences are not easily identifiable. Correspondences are
an implicit part of the transformations and not explic-
itly modeled. The second problem (P2: Complexity)
occurs, because the transformations are a result of
the underlying domain. A complex model can lead to
complex transformations. P2 is directly dependent on
P1. For example, in a change-impact analysis which
allows to determine the impact of a change of mechan-
ical/electrical elements to corresponding architecture
elements in the control software [6] each impact must
be described separately. As a result, the reuse and
maintainability of an adapter and its transformation
is hindered.

3 Language

The goal of the correspondence language is to allow
the modeling of a connection between two entities and
a transformation if necessary. An entity is defined



� �
// Entities

entity Airplane extends SimEntity:

provides Velocity

entity Jet extends SimEntity:

requires Speed

// Exchange Types

exchange Velocity:

int: Magnitude

vector3D: Direction

exchange Speed:

int: Magnitude

// Correspondence

correspondence of airplane and jet:

if input is Airplane then use

velocity_to_speed

//Rules

rule velocity_to_speed:

return Airplane.Velocity.Magnitude� �
Listing 1: ”Correspondence Language Example”

with the keyword entity. An excerpt of the DSL is
depicted in Listing 1. It shows the correspondence be-
tween two entities SimEntity named “Airplane” and
“Jet”. As the name SimEntity implies, the two enti-
ties “Airplane” and “Jet” are software systems, more
precisely simulations, which need to be coupled. Each
entity can define required and provided fields. In
our example, we define two exchange types. The first
is “Velocity” which has a magnitude and a direction.
The second is “Speed” which has a magnitude but
no direction. The “Airplane” simulation uses velocity
and the “Jet” uses speed. In order to define a corre-
spondence between these two entities, the language
provides the keywords correspondence of which con-
nects two entities. If the airplane simulation sends data
to the jet simulation, the specified transformation rule
“velocity to speed” needs to be called. The rule is
simplified and returns the magnitude of the airplane.
In future iterations of the language, it is planned to
allow more complex transformations. The idea is to
allow the integration of transformation languages like
QVT and ATL. The utilization avoids to implement
another transformation language and set the focus on
the structure of the correlation.

The problem P1 is tackled by the explicit modeling
of each correspondence and the separation of the trans-
formation rules and their depending in- and output.
The problem P2 is tackled by the simplicity of the DSL
and the possibility of splitting code in multiple files.
The solution of these problems results in a structuring
of the correlation, thus a better maintainability and
the possibility of reusing transformations for different
correlations can be achieved.

4 Future Work

For the future it is planned to provide and integrate a
set of predefined transformations in the language. The
idea is to include name mappings (e.g., input: speed,
output: Speed) and type conversions (e.g., hour to
seconds) as language features. Here template solutions
for classes of transformation will be researched to pro-
vide support in the application of the language. Also,
further research on how to improve the transforma-
tion description while keeping it also light-weight in
the language is possible. The generation of code from
the correspondences and transformations is another
topic that will be realized. Furthermore, it will be
researched how correspondences between source-code
elements and model elements can be realized within
the language.

Acknowledgement

This work was supported by the Ministry of Science,
Research and the Arts Baden-Württemberg in the
funding line Research Seed Capital (RiSC) and by the
German Federal Ministry of Education and Research
within the project “Security of Connected Infrastruc-
tures” in the Competence Center for Applied Security
Technology (KASTEL).

References

[1] I. Sommerville. Software Engineering, Global Edi-
tion. Vol. 10. Pearson Education Limited, 2016.
816 pp.

[2] E. Gamma et al. Design Patterns: Elements of
Reusable Object-Oriented Software. Pearson Edu-
cation, 1994. 457 pp.

[3] S. Koch, F. Reiche, and R. Heinrich. “Towards
a Metamodel for Modular Simulation Environ-
ments”. In: Models and Evolution Workshop,
MODELS’18. CEUR-WS, Oct. 2018.

[4] E. Kang, A. Milicevic, and D. Jackson. “Multi-
representational security analysis”. In: FSE. ACM
Press, 2016, pp. 181–192.

[5] S. Seifermann, R. Heinrich, and R. Reussner.
“Data-Driven Software Architecture for Analyzing
Confidentiality”. In: ICSA’2019. IEEE, 2019.

[6] R. Heinrich et al. “Architecture-based change im-
pact analysis in cross-disciplinary automated pro-
duction systems”. In: Journal of Systems and
Software 146 (2018), pp. 167–185.

[7] K. Busch et al. “A Model-Based Approach to
Calculate Maintainability Task Lists of PLC Pro-
grams for Factory Automation”. In: IECON’18.
IEEE, Oct. 2018, pp. 2949–2954.

[8] R. Heinrich et al. “Software Architecture for Big
Data and the Cloud”. In: Elsevier, 2017. Chap. An
Architectural Model-Based Approach to Quality-
aware DevOps in Cloud Applications.


	Introduction
	Problem Statement
	Language
	Future Work

