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1 Introduction

State diagrams are commonly used for specification
or illustration of behavior. They appear on all levels,
from high-level system behavior down to behavior of
a single function. However, state diagrams are often
implemented manually, and there is no guarantee that
the implementation corresponds to the specification.
Furthermore, a state machine may be implemented in
the code without having a specification in form of a
state diagram, and it might be that the developer was
not even aware that he is implementing one. We call
this kind of implementations implicit state machines.
Our practical experience has shown that such code is
very hard to comprehend. In this paper, we describe
our work [2] on applying the idea of reflexion models
on state diagrams.

2 Reflexion Models

Reflexion analysis was first described by Murphy et
al. [1]. They proposed it to overcome the gap between
high-level models and code. Their approach supports
both checking adherence of code to a given architec-
ture and reconstructing the architecture from code.
The basic idea is to provide a conceptual model along
with a mapping between conceptual components and
source code, and then to use that mapping to lift de-
pendencies from the code (automatically extracted) to
the conceptual level. The existing dependencies can
then be compared to the expected or allowed depen-
dencies from the conceptual model, which leads to a
classification as convergence (code fits model), diver-
gence (unexpected dependency in code), or absence
(missing dependency in code). The resulting model is
called reflexion model.

3 Application to State Diagrams

The original reflexion analysis check is done by static
code analysis, which immediately delivers existing de-
pendencies (variable access, function calls, type usage,
etc.). To apply this idea to state diagrams, we need a
way to determine states and transitions from the code.
Similar to the architecture case, we rely on the user to
provide a model of the intended state diagram. The
mapping is done differently: States are characterized
by their invariant, and transitions are described by
their transition condition. Both conditions have to be

expressed in terms of expressions on variables of the
program.

Extraction of existing transitions is a bit more
tricky. The question is which other states can be
reached from a given state, i. e., assuming that a cer-
tain invariant holds before our function is executed,
which other states can we possibly be in when the
function returns? This is a question that can be an-
swered using bounded model checking.

4 Bounded Model Checking

A bounded model checker (BMC) can check whether a
certain condition (“assertion”) always holds at a spe-
cific point in the program – up to a certain number of
loop iterations (the bound). If it doesn’t hold, BMC
can provide a counter example that illustrates a vio-
lation. It can also do that check under additional as-
sumptions. We use this capability to do the required
transition existence check: We give the start state’s
invariant as assumption before invocation of our sub-
ject function and let a BMC tool check whether the
negated target state invariant always holds after invo-
cation of the function. The transition is only possible
if the negated target state invariant does not always
hold, as this means that there are cases where the
target state invariant holds.

If we also want to check transition conditions, we
can provide the transition condition as additional as-
sumption and then check whether the target state can
still be reached. However, some additional considera-
tions are required for this check, as the same condition
may also lead to other states than the target state, and
there may be other conditions that lead to the same
target state [2].

5 State Diagram Reflexion Model

The edges of the reflexion model can be calculated as
follows (for checking existence of transitions only):

RM(s, t) :=


convergence ∆spec(s, t) ∧∆code(s, t)

divergence ¬∆spec(s, t) ∧∆code(s, t)

absence ∆spec(s, t) ∧ ¬∆code(s, t)

ε ¬∆spec(s, t) ∧ ¬∆code(s, t)

∆spec is the transition information from the con-
ceptual model, which is specified by source and tar-



State A
Inv: t>0

State B
Inv: t≤0

A: assume(t>0) A: assert(!(t>0))

if (t > 0)
t = t – 1;

A: assume(t>0) B: assert(!(t≤0))

B: assume(t≤0)

B: assume(t≤0)

A: assert(!(t>0))

B: assert(!(t≤0))
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Figure 1: Example: Assumptions and assertions per
state combination, BMC result and resulting reflexion
state diagram for the given code fragment.

get state of each transition. ∆code is the transition
information as derived from the code, based on the
possible sequences of invariants. For ε, there is no re-
flexion edge. RM gives feedback about the existence
of a transition between two states. A similar compu-
tation is possible with consideration of transition con-
ditions [2]. In this case, we additionally introduce par-
tial convergence edges, which indicate that the given
transition condition is necessary, but not sufficient.

6 Example

Figure 1 shows an example for application of our ap-
proach using BMC1. The code in the middle is our
subject function, and we identified the state invari-
ants t > 0 and t ≤ 0. The invariants of all possible
state pairs are then fed to BMC as shown in the table
(one row per combination), and the respective BMC
result is shown in the rightmost column. For example,
the transition from state A to state B is checked by
assuming A’s invariant (t > 0) before and asserting
B’s negated invariant (t > 0) after execution of the
code in question. As there are cases when (t > 0) is
true before executing the code but is not true after
execution (i. e., t = 1), BMC returns false – and thus
we know that a transition is possible. When BMC
returns true, we know that there is no variable as-
signment that fulfills the assumption and leads to the
target state invariant – and thus there is no transition.
We do the same analysis for all other state pairs. The
BMC results can then be transferred to the diagram.

7 Use Cases

This approach enables a number of different use cases
that we describe in the following. Firstly, it can be
used for program understanding. When the developer
has an initial idea which states are relevant, he can
specify the state invariants and let the approach de-
termine which transitions are possible between these
states. Based on the feedback, the invariants can then
be refined to identify interesting states. If he even

1We use CBMC: http://www.cprover.org/cbmc/

has an idea about transition conditions, he can also
add those and check if his expectations are matched.
This approach allows the developer to do superficial
code reading, then formulate a hypothesis and check
it against the code. This should be much more ef-
ficient than getting a detailed understanding of the
code based on intensive code reading alone.

A second use case is the elaboration of the rele-
vant state space. Often, state is encoded into multiple
variables – but only certain combinations of variable
states are relevant. For example, the state may be
coded into a bit field, but only one bit can be set at
one point in time. This is something that can easily
be found out by our technique: We provide all pos-
sible states and let the tool check which of these are
reachable.

Another use case is consistency check of state dia-
grams with actual code. Given the specification state
diagram, the tool can find out which transitions really
exist and whether their transition conditions are im-
plemented as specified. This ensures long-term main-
tainability, as the code keeps in sync with the models.

8 Conclusion

We introduced the idea of adopting reflexion mod-
els to interactively extract state machine models from
code or check conformance of code with design-level
state machine models. Our approach can greatly sup-
port developers in different activities, such as pro-
gram understanding, conformance checking and soft-
ware verification. Also, the approach is applicable to
real-world software – it scales remarkably well, with
the restriction that loop iterations must be bounded.
It is especially well-suited and relevant for embedded
control software, where most functions have state due
to discretization of continuous processes. We have
successfully applied the approach to several functions
from the automotive domain.

In summary, using the CBMC model checker to
generate reflexion models for state machine mining ap-
pears to be a very promising approach that is capable
of providing useful support for software maintenance.
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