
Model-Driven Performance Optimization Tool Platform for
Multi-core Systems with Open Sources Technologies

Syed Aoun Raza
Robert Bosch GmbH

E-mail:Aoun.Raza@de.bosch.com

1 Abstract

With the advent of multi-core ECUs and hardware
fusion in the automotive domain, the tooling environ-
ment to support multi-core software development has
gained significance. Especially, tools that can pro-
vide an early indication about the architectural be-
havior before the existence of the code. Such do-
main specific tool platforms, which enable analyses
(e.g., data-consistency) and optimizations (memory
management, task-to-core mapping, timing simula-
tions and distribution) are not easily available. The
commercial solutions available on the market cannot
be applied generally with off the shelf optimization op-
tions. Therefore, at Bosch we have developed a tool
platform that bridges the open source and commer-
cial solutions to support analysis and optimizations of
multi-core system development. This paper provides
an overview of the different optimization use cases and
developed tool platform.

2 Introduction

The motivation behind this work was to establish a
common tooling platform solution for Bosch produc-
tive system development, where several existing and
future development use cases for multi-core analysis
can be synergistically combined. We started with a vi-
sion and strategy that this tooling should focus mainly
on automotive sector specific scenarios and support
multi-core developers in all system development steps
i.e., from different abstraction levels. After analyz-
ing the requirements and development use cases, we
identified several scenarios and divided them into fol-
lowing two categories

• Legacy system migration from single- to multi-
core

• Green Field Approach (GFA) or development
from scratch

In the first category, the main focus is to keep the
system running with a gain in performance from the
multi-core hardware architectures. Further, once mi-
grated the legacy system should not become a vic-
tim of classical multi-core system problems such as
data-inconsistency and deadlocks. On the other hand,
there can be a tendency to be conservative and over-
protect shared data during the migration to multi-
core hardware architecture. This can lead to resource
usage bottlenecks, because the legacy architecture de-

sign lacks the initial multi-core system design and de-
velopment mindset.

Second category provides extensive opportunities
to utilize the multi-core hardware architectures effi-
ciently. As development from scratch has more free-
dom and flexibility for new concepts on system archi-
tecture level to develop a behavior that can utilize the
capabilities of the new hardware architectures. How-
ever, if we can extract a higher-level of abstraction
from legacy systems, the solution and opportunities
becomes nearly same for architecture designers and
analysts. Figure 1 depicts, how scenarios from both
categories can be combine to achieve maximum bene-
fit.

Figure 1: Identified use cases

In the next sections, we shall briefly discuss main
uses cases and tool solution platform to support the
software development in both categories.

3 Use Cases

Currently, the automotive system softwares already
support parallel execution with the help of concur-
rency and multi-tasking concept on a single-core micro-
controller for hard real-time. However, to exploit the
multi-core hardware architecture these concurrency
concepts are not fully optimized and needs to be re-
structured for extensions. Additionally, the first chal-
lenge is to achieve a performant allocation of the sys-
tem to the cores in such a way that the existing pro-
gram does not require any change. The solutions must
be scalable to support a potential future hardware
architectures with increased number of cores. This
decision is complex and must take into consideration
available knowledge on the computations to avoid any
decrease in quality or reliability of the system. There-
fore, this process need proper tool infrastructure to
support extracting the requirements from the legacy



system and re-analyze the system architecture. Simi-
larly, the systems which are designed from the scratch
need to keep the growing nature to hardware archi-
tecture cores and introduce the flexibility for future
migrations. Hence, we see two major activities for us
to support such systems development where architects
need support from the tools and methodologies, these
are detailed in the next subsections.

3.1 Software distribution

The initial step toward a multi-core system design in-
volves the software distribution according to the un-
derlying hardware architecture. This means the archi-
tects should be able to design system component and
get an early response of core-load distribution. This
can be achieved with current model-based simulation
tools such as Timing Architect (TA) or INCHRON
ChronSIM. Therefore, this acts as a first major chal-
lenge in development of the flexible infrastructure to
use simulation tools.

3.2 Core-load improvements

Secondly, after the system has been distributed on
multi-core hardware and optimized for timing and data
consistency requirements. There are still possibili-
ties to improve the system in terms of memeory ac-
cesses. As every core spends a significant amount of
time for data and code accesses. The goal of core-
load optimization is to allocate data and code to the
available memories in a way that the overall perfor-
mance of the system is optimized. In other words,
the cross core loads (CPU loads that stem from cross-
communication of coreX to coreY-local memories) are
reduced to a minimum. Hence, as a second major re-
quirement we developed a generic solution Local Core
Memory Optimization (LOCOMO) to reduce the time
spent by the core for accessing data and code. An-
other, aspect for us was to make it possible for our
user to be able to utilize this technique in different
projects.

4 Methodology and Tools

As there are different sources of information which are
available, we focused on developing a platform tool so-
lution for all such requirements where user can benefit
from it without spending much effort to make sev-
eral format transformations. To keep this effort min-
imal and achieve global visibility we have decided to
use AMALTHEA data model from eclipse open source
APP4MC (https://www.eclipse.org/app4mc/) project.
The aim of APP4MC was to develop a platform model
specialized for multi-core system description. There-
fore, we decided to base our tooling platform (PLAT4MC)
on AMALTHEA model to achieve higher flexibility in
the tool design and interface it with proprietary sim-
ulation tools.

PLAT4MC provides different tools to obtain an
AMALTHEA model from either already existing soft-

ware specification (AUTOSAR/MSR) or C sources
and Executable and Linking Format (ELF). Later,
the obtained AMALTHEA model can be refined, en-
riched or adapted according to the optimization use
case. Therefore, PLAT4MC additionally provides in-
terfaces and tools such as data consistency checks, lo-
cal core memory optimizations and the merger. It also
include the visualization architecture explorer based
on eclipse technologies. Figure 2 show the architecture
details of PLAT4MC which is based on open source
technologies and mainly includes

• SCA2AMALTHEA: model export from C Source
Code Analysis

• ELF2AMALTHEA: model export from ELF
• AUTOSAR/MSR2AMALTHEA: model export

from MSR/AUTOSAR specification
• RB LOCOMO: Local Core Memory Optimiza-

tions based on runtime statistics
• Data Consistency Checks (DCC): Static checks

for the data access inconsistencies
• Software sharing infrastructure to exchange mod-

els with OEMs

Figure 2: Architecture of PLAT4MC

Different project can use combinations of tools from
PLAT4MC to achieve high- or low-level optimizations.
For example, some projects obtain AMALTHEA model
from C-sources, enrich memory allocation information
from linker configurations and ELF sources. The ob-
tained model depending on the core-load distribution
requirement is mapped to HW architecture, this newly
derived SW distribution is further optimized for data
and code allocation using rb locomo. The resultant
system has lower load on communication network on
the ECUs. Similarly, the AMALTHEA model can be
used to verify ASIL specific component communica-
tions. It can be seen that strength of PLAT4MC lies in
its shared exchange data format among several tools.

5 Summary

In this paper, we have introduced PLAT4MC an eco-
system that is based mainly on open source eclipse
technologies, and discussed how its core, AMALTHEA
model, can be used as an exchange format to achieve
multi-core system related optimizations across several
tools.


