
SimuLizar NG: An extensible event-oriented simulation engine for

self-adaptive software architectures

Sebastian Dieter Krach and Max Scheerer
{krach, scheerer}@fzi.de

FZI Research Center for Information Technology

Abstract

Software simulation constitutes an essential mecha-
nism for design time architecture analysis. Domain-
specific software, e.g. of cyber-physical systems, re-
quires domain-specific extensions to the architecture
models and their execution semantics. Existing sim-
ulators are cumbersome to extend, do not support
self-adaptivity or do not scale well. In this paper we
present concepts of SimuLizar NG, a scalable simu-
lation engine for the SimuLizar approach. Its prin-
cipal goal is to facilitate domain-specific extension
and adaptations to the model interpretation semantic
while at the same time ensuring reactive simulation
execution in demanding scalability scenarios.

1 Introduction

Modern cyber-physical systems as e.g. self-driving
vehicles rely on increasing amounts of software to
perform critical tasks of the system. Hence, the re-
quirements towards availability and resilience of the
software components increase as well. The Palladio
approach [4] allows for factoring predictions of run-
time metrics into the early software design. One
way of generating predictions is by simulating the
system based on a model of the software, the hard-
ware and the expected usage. SimuLizar [3] consti-
tutes a simulation-based analysis within the Palladio
approach. It supports analyzing the effect of self-
adaptation mechanisms by allowing changes to the
architecture model during a running simulation.

Employing discrete event simulation (DES),
SimuLizar runs a monolithic model interpreter in a
separate thread for each simulated user in the system.
Limited through the single threaded nature of DES
only one interpreter can run at a time. Consequently,
the design is prone to scalability issues when simulat-
ing large numbers of concurrent users. In particular,
when evaluating self-adaptive policies, the simulator
needs to be able to cope with overload scenarios. As
Merkle et al. [2] showed, the scalability improves when
using event orientation. The cost of which is an in-
creased complexity of the model interpreter.

The model interpreter of SimuLizar uses switch-
case-like constructs to process the PCM model ele-
ments based on the element type. Adding support

for new types or instance properties, e.g. stereotypes,
requires intrusive extensions to the interpreter.

Therefore, in this paper we present the design of
SimuLizar NG (Next Generation), a new simulation
engine for the SimuLizar approach. SimuLizar NG
aims to replace the current model interpreter and is
designed to address the major drawbacks of the cur-
rent implementation: 1) facilitate simulations of a
large number of parallel activities while remaining re-
sponsive and 2) providing means of adapting the sim-
ulation logic in an non-intrusive manner.

2 Foundations and Related Work

Performance simulation in Palladio relies on queuing
network semantics [4]. Based on a workload specifica-
tion describing the manner of user arrival to the sys-
tem, the simulator instantiates simulated users. These
users interact with software component instances (As-
semblies) through provided interfaces. Components
specify behavior in relation to service calls of required
components and internal resource demand. Thereby,
simulated users issue demands to capacity-limited re-
sources and continue once processing finishes.

Discrete event simulation represents a system as set
of system state variables which only change at discrete
points in simulated time (events) [1]. Two dominant
world views in DES are event orientation and process
interaction. While process interaction describes dy-
namic behavior as sequence of time-ordered activities
and delays, event orientation models it through event
routines which execute in zero simulated time [1].

The existing simulators for the PCM SimuCom [4]
and SimuLizar [3] adhere to a process interaction
view. User behavior is simulated as time-ordered se-
quence of resource requests and delays encapsulated
into distinct threads. When issuing resource demand,
the user thread is suspended until processing has fin-
ished. EventSim [2] adheres to a event oriented world
view. Dynamic behavior is realized as zero simulated
time consuming event routines. EventSim requires the
developer to schedule behavior using closures and, in
that, sacrifices the intuitive sequential specification of
activities. SimuLizar NG conceptually adheres to a
process interaction view while leveraging the techni-
cal advantages of event oriented processing.



3 Concept

SimuLizar NG aims at increasing simulation scalabil-
ity by replacing the one-to-one mapping between sim-
ulated users and native operating system threads with
an event oriented single-threaded realization. In or-
der to support runtime changes to the architecture
model SimuLizar NG continues to use a visitor-based
approach navigating through the model.

Leveraging the scalability advantages of event ori-
ented processing requires the model interpreter of a
single user not to block on encountering simulated
time consuming activities. Instead, it needs to tem-
porarily return and allow for processing of other users.
Furthermore, to increase extensibility we split the
monolithic interpreter into multiple interpreters and
a selection mechanism. In accordance with the sin-
gle responsibility principle, each interpreter targets
onyl one type of model element for which it realizes
only one of the following effects: 1) simulate time
consuming side effect, e.g. CPU demand processing,
2) change the current execution context, e.g. External
Call Actions might change the Resource Container on
which execution continues, or 3) determine model el-
ements which are processed next, e.g. in ResourceDe-
mandingBehaviours or Loops. Consequently, adding
support for new model elements types only requires
providing the appropriate interpreters.

SimuLizar NG conceptually emulates a process ori-
ented world view through stateless interpreters for
which simulation state is captured by a Concurrent
Interpretation Context (CIC). The CIC constitutes
the equivalent of a simulation process and allows to
identify the activity source (e.g. a user). Similar to
a call stack, the CIC itself consists of stack frames
called Interpretation Step Contexts (ISC). Interpre-
tation step refers to the execution of a set of inter-
preters for a particular (set of) model element(s) in
the context of a user. Hence, every ISC is charac-
terized by I) the model elements which are actively
processed during this step, II) an ordered set of inter-
preters suitable for processing I), and III) the context
determined previously executing interpretation steps.
Figure 1 depicts the relationship between CIC, ISCs
and the PCM architecture model.

Since an interpreter only simulates a single effect
w.r.t. a model element, multiple interpreters can be
executed during an interpretation step. For Inter-
nalAction elements, an interpreter simulates resource
demand, while another one simulates software fail-
ures. During every step the interpreters are executed
sequentially ordered by their priority. Higher priority
interpreters can prevent an execution of lower priority
ones in order to override default behavior. The inter-
pretation step is finished as soon as all interpreters
finished or an interpreter decided to abort the inter-
pretation step (e.g. in case of a simulated failure).

Once an interpreter identifies a model element to
be interpreted next in the same execution context it

Concurrent Interpretation Context 

Interpretation Step Context 
:RDSEFF

[…]

Execution Prot.

DONE NEW
:RDSEFF Failure 

Interpreter

:RDSEFF 
Interpreter

:Usage 
Scenario

<<represents>>

<<represents>>

Interpretation Step Context

Execution
Protocol

:Internal 
Action

<<represents>>

Interpretation Step Context

Execution
Protocol

Assembly

Resource 
Container

Contextual 
information

Interpreter 
execution status

<<represents>>

active

<<specifies 
execution>>

Simulated User

Figure 1: ISC stack of an exemplary CIC

requests the addition of an ISC to the current CIC.
This behavior is similar to adding a new stack frame
to a stack upon calling a function.

3.1 Interpreter design

SimuLizar NG’s simulation of software behavior is re-
alized by modular Interpreters. Once a model element
is selected for interpretation (e.g. an InternalAction in
the context of a ResourceDemandingBehavior) an Ex-
ecutionProtocol is calculated and stored in the newly
constructed ISC. The protocol specifies the execution
order of the interpreters which were determined suit-
able for the selected model element(s). Since inter-
preters are stateless and cannot suspend execution
during delays the execution protocol serves as storage
for interpreter state. The execution protocol is stored
within the ISC as the captured interpreter state is
only valid in the context of a particular user.

Invocation of an interpreter results in one of the
states Done, In Progress or New. Done signifies
that the interpreter has finished. In Progress states
that the interpretation of the current model element
takes further simulated time. Hence, the CIC will be
rescheduled once these activities have finished. New
states that the interpreter requested interpretation of
a new set of model elements. In this case, a new ISC
is constructed within the current CIC. Interpretation
of the current ISC will continue once the execution
protocol of the newly constructed ISC has finished.

The execution protocol of an ISC is finished once all
invoked interpreters result in Done or, as outlined be-
fore, when an interpreter request an early stop to the
execution protocol, as long as all interpreters with a
higher priority resulted in Done. As soon as an execu-
tion protocol finishes, the ISC is marked stale and in-
terpretation of the previous ISC continues. Stale ISCs
are temporarily kept to allow interpreters to process
the result of nested interpretation. They are removed
on creation of new ISCs.

2



Example A RDBehaviorInterpreter processes Re-
sourceDemandingBehaviors, one action after another,
starting with the behavior’s StartAction. For each
action the interpreter requests interpretation in the
current context. After the respective interpreters for
an interpretation request resulted in Done the RDBe-
haviorInterpreter gets called and continues requesting
interpretation of the next action. Since the interpreter
is stateless, it determines the next action based on
the stale ISC of the previous action for which it re-
quested interpretation. The modular interpreter de-
sign lets us decouple the simulation of software fail-
ures. The InternalActionFailureInterpreter adds a
specific marker to an ISC in case a failure occurs.
On the ResourceDemandingBehavior -level a separate
RDBFailureInterpreter checks the stale ISCs for these
markers. When it encounters one, it aborts the execu-
tion protocol, otherwise the lower-prioritized RDBe-
haviorInterpreter and, hence, the default case is run.

3.2 Interpreter selection

When an interpreter initiates the construction of a
new ISC suitable interpreters are determined. Their
priority order is calculated based on the model ele-
ments to interpret, the active CIC and the simulation
configuration. In compatibility to existing interpreta-
tion semantics, the order can be determined by the
type of the model element to interpret. Interpreters
are registered upon simulation configuration, assign-
ing their respective priority to the supported types.
Consequently, for each type used in the architecture
model, the execution order can be calculated ahead of
simulation time. Additional extensibility mechanisms
are provided to identify suitable interpreters based on
instance properties, i. e. applied stereotypes.

3.3 Interpreter scheduling

Every CIC represents a thread of sequential software
activities. SimuLizar NG manages a central queue
of CICs which are scheduled for the current point in
simulated time to run. The queue is processed se-
quentially. For each CIC, the execution protocol of
its most recent ISC is processed. If interpreter execu-
tion lead to either the construction of a new ISC or
marking one as stale the CIC is appended to the queue
again. As soon as the queue is processed the under-
lying DES framework advances to the next point in
simulated time for which events have been registered.

3.4 Contextuality

The interpretation of model elements is dependent of
the context of the interpretation, i.e. the history of
previously visited elements. For example, an Internal
Action issuing CPU resource demand requires infor-
mation about the component instance (Assembly Con-
text) which is currently executing and its allocation
to a resource container. Both cannot be determined
based on the model element itself, as Internal Action

are type-level specifications. Instead the information
has to be inferred from interpretation history.

CICs serve a double purpose. First, they repre-
sent sequential threads of actions. Additionally, the
CIC constitutes a dictionary of interpretation context-
specific information. Interpreters can request the in-
formation during execution. Each information aspect
is identified by a Context Information Type. The types
are declared by concrete interpreter implementations.

For example, upon interpretation of an InternalAc-
tion the ResourceDemandInterpreter requests the Re-
source Container to which the currently executing as-
sembly is deployed. For each type the first ISC which
specifies an explicit information fragment serves as in-
formation provider. The lookup is conducted from the
most recent ISC, proceeding down in the ISC-stack of
the current CIC. Therefore, ISCs can override existing
information or, by specify an empty mapping, remove
certain information from the current context.

The available contextual information is determined
by the executed Interpreters, which rely on the con-
text to store simulation state. The LoopInterpreter,
e. g., stores its loop counter in the context. Based
on its value, the interpreter either requests processing
the nested behavior (again) or results in Done.

4 Conclusion and Future work

In this paper we presented the conceptual design of
SimuLizar NG, a new model interpretation engine for
the SimuLizar approach [3]. Decoupling model traver-
sal and side-effect simulation for each kind of model el-
ement into distinct entities facilitates customization to
domain-specific use cases. Our conceptually process-
interaction world view using event oriented mecha-
nisms allows us to keep interpreters simple while re-
lieving us of the overhead of separate threads per user.

We are currently in the process of implementing the
concepts described in this paper. We plan to evaluate
the prototype against existing solutions, particularly
w.r.t. simulation duration and memory consumption.

References

[1] J. S. Carson. “Modeling and Simulation World-
views”. In: Proceedings of 1993 Winter Simula-
tion Conference (WSC ’93). Dec. 1993.

[2] P. Merkle and J. Henss. “EventSim – An Event-
driven Palladio Software Architecture Simula-
tor”. In: Palladio Days 2011 Proceedings. KIT,
Fakultät für Informatik, 2011, pp. 15–22.

[3] M. Becker, S. Becker, and J. Meyer. “SimuLizar:
Design-Time Modelling and Performance Anal-
ysis of Self-Adaptive Systems”. In: Proceedings
of SE 2013. Lecture Notes in Informatics (LNI).
Gesellschaft für Informatik e.V. (GI), 2013.

[4] R. H. Reussner et al. Modeling and Simulating
Software Architectures – The Palladio Approach.
Cambridge, MA: MIT Press, Oct. 2016. 408 pp.

3


	Introduction
	Foundations and Related Work
	Concept
	Interpreter design
	Interpreter selection
	Interpreter scheduling
	Contextuality

	Conclusion and Future work

