Simplifying Software System Monitoring through Application

Discovery with ExplorViz

Alexander Krause, Christian Zirkelbach, and Wilhelm Hasselbring
Software Engineering Group
Kiel University, Germany
{akr,czi,wha}@informatik.uni-kiel.de

Abstract

Keeping an overview of software systems is a cru-
cial task in the area of software engineering. Of-
ten this task is supported by application performance
management (APM) tools, e.g., Kieker, a monitor-
ing framework based on dynamic software analysis.
Kieker is highly extensible and customizable, but lacks
a user-friendly setup configuration due to its frame-
work characteristic. Based on this obstacle, users of
our live trace visualization tool ExplorViz, which em-
ploys Kieker, experience problems during monitoring
their applications.

In this paper, we report on our ExplorViz appli-
cation discovery and monitoring management system
(ADAMMS) to circumvent this drawback. The key
concept is to utilize a software agent that simplifies
the discovery of running applications within operat-
ing systems. Furthermore, the ADAMMS properly
configures and manages Kieker instances to monitor
these applications. Thereupon, we demonstrate how
the monitoring procedure can be eased and how both
open source projects — ExplorViz and Kieker mutually
benefit from our approach. Finally, we conduct a first
pilot study to evaluate the usability of our approach
with respect to an easy-to-use application monitoring.

1 Introduction

The heterogeneity of software systems, especially in
terms of programming languages, internal complex-
ity, and communication between applications, is ad-
vancing. As a result, the development of software
systems is becoming increasingly demanding. Devel-
opers and operators are forced to continuously renew
their claimed knowledge of developed program inter-
nals and deployment details. New team members are
even more exposed to this situation, as they must
know diverse details of unknown source code and its
behavior.

As a consequence, the comprehension of large soft-
ware landscapes with possibly hundreds of applica-
tions is a challenging task, which requires extensive
tool support. One established type of tools for this
task are software software visualization (SV) tools [3,
5].

The SV tool ExplorViz! provides a live trace visual-
ization of large software landscapes and their included
applications [7]. For instrumentation and monitor-
ing aspects, the software utilizes a dynamic analysis
approach provided by the Kieker monitoring frame-
work [6].

Unfortunately, users who want to setup the moni-
toring must manually follow a specific procedure for
each desired application. This works for a small num-
ber of locally running applications, but is not suitable
for enterprise software landscapes with a vast number
of server nodes. Therefore, we propose an easy-to-use
application monitoring approach for ExplorViz, which
semi-automatically configures, instruments, and mon-
itors (Java) applications.

To the best of our knowledge, there exist no com-
parable approaches in the research domain. However,
we found several commercial tools with similar appli-
cation discovery and monitoring management mech-
anisms. For example, both tools Dynatrace? and In-
stana® use artificial intelligence to automatically dis-
cover and monitor applications. Unfortunately, these
tools are not designed to offer software visualizations,
but rather show performance metrics applied to soft-
ware systems and comprised applications.

The remainder of this paper is organized as follows.
In Section 2, we describe the architecture and proce-
dure of our ADAMMS. Afterwards, we present a first
pilot study regarding the usability of our approach
in Section 3. Finally, the conclusions are drawn and
future work is revealed in Section 4.

2 The ADAMMS Approach

ExplorViz visualizes software landscapes with appli-
cations running on different servers. The ADAMMS
supports this multi-server environment and enables
users to manage application monitoring configurations
in one graphical user interface (GUT). This differs from
the previous and general approach, where users must
access each server and manually start the monitoring
of each application via a command line interface.

Thttps://www.explorviz.net
2https://www.dynatrace.com
Shttps://www.instana.com/application-management

https://www.explorviz.net
https://www.dynatrace.com
https://www.instana.com/application-management

<<component>>
ExplorViz

Monitoring

<<component>>
Backend

g]

Backend Resources

O—HO—O—

<<component>> @

<<component>> g
Analysis

O

Frontend

Core Services
Core API

@

Registration

<<component>>
Backend Extension

<<component>>
Frontend Extension

2] - O——

©

<<component>> g
Agent

O58

Data

/j\ Ext. Resources

Figure 1: Architectural overview of the ExplorViz ADAMMS

2.1 Architecture

The architecture of the ExporViz ADAMMS is de-
picted in Figure 1. It consists of three main com-
ponents (grey-colored). The ADAMMS’ agent (here-
inafter also referred to as agent) is a Java program
that is responsible for application discovery and the
monitoring configuration management. Users can de-
ploy separate instances of this component on each
server they want to scan for running applications in
order to monitor them. On startup, all agents try to
register at a central repository. Subsequent data is
then fetched by this repository, merged, and eventu-
ally provided to clients by means of a single interface.

The extension mechanism of ExplorViz allows de-
velopers to build new components in the ExplorViz
context without interfering with the core logic [8].
For that reason, the backend and frontend compo-
nents provide interfaces, so that new developers can
read data and use provided operations in their ex-
tension. We employ this extension mechanisms in
our ADAMMS. The resulting backend extension rep-
resents the introduced central repository, whereas the
frontend extension acts as client and is responsible for
the visualization of data and GUI forms. The com-
munication between agent, backend, and frontend is
based on HTTP requests. The overall architecture
enables a loosely coupled system, therefore easily ex-
changeable components.

2.2 Application Discovery and
Monitoring Management

In our use case, application discovery is equal to find-
ing running Java processes in the encompassing op-
erating system (OS). The monitoring of these pro-
cesses is started by inserting Kieker-related options
to the process’ execution command, e.g., the path to
the Kieker Java agent, and finally restarting the pro-
cess. These two mechanics are performed by imple-

mentations of our process management type (PMT)
Java interface. Developers can implement new PMTs
and enable the usage on different OS platforms. Both,
the introduced architecture in 2.1 and the PMT inter-
face decouple the ADAMMS’ agent from our overall
system and eventually enable the usage in other envi-
ronments with different monitoring frameworks.

We implemented an exemplary PMT that uses the
Java ProcessBuilder class to execute command line
tools, such as processes (ps) or kill. The applica-
tion discovery mechanism repetitively uses the PMTs
to obtain the current OS Java process list (OSJPL).
This is the first step (@) of the application discovery
pipeline as shown in Figure 2. Since processes must be
restarted for the Kieker monitoring, we try to enrich
the execution commands of processes with potentially
found working directories and therefore absolute paths
(®). In addition to discovering processes, we also uti-
lize so-called recognition strategies (@). These strate-
gies are based on a rule-based engine and try to rec-
ognize the applications behind found processes. If an
application is recognized, for example by examining
the execution command of its process, the strategies
also recommend a suitable monitoring configuration
to the user. Developers can add their custom rules to
support unknown applications. Finally, the current
OSJPL is merged with the data of the previous iter-
ation (@). Thus, we can detect and notify the user
about process loss or malfunction of specific monitor-
ing configurations.

Since we use the Kieker framework for monitor-
ing, the management of related aspects is limited to
the modification of two files (monitoring and Kieker
configuration). The agent creates and hosts these files
for each discovered process. Modifications, e.g., which
specific source package should be monitored, and rec-
ommendations based on the recognition strategies are
accessible via the respective frontend extension.

/Application Discovery (Single Iteration)

Obtain Working
Directory

Obtain OSJPL

Apply Recognition Analyze and
Strategies Merge

current OSJPL

enriched OSJPL
(1)

enriched OSJPL

@) old OSJPL

Figure 2: Application discovery and recognition procedure of the ADAMMS’ agent

3 Evaluation

For our first pilot study, we examined the usability
of our system focusing on the graphical user interface.
Based on the results of our study, we are able to derive
indications for the overall usability of our system.

We asked a researcher from our research group, who
utilizes ExplorViz in his daily work, to test our Ex-
plorViz ADAMMS. For the experiment, we designed a
set of typical tasks the subject had to perform. These
cover the main features of our system, i.e., detecting
an application and setup of the monitoring configu-
ration with Kieker. After the tasks were solved, we
completed the experiment with an informal type of
a pluralistic walkthrough, i.e., a method for usability
inspection, to gather possible enhancements from the
subjects’ perspective [2, 4].

For the experiment, we deployed two applications
(JPetStore 6 and a self-built sample application) and
our agent on three different machines. One machine
also hosted an ExplorViz instance. The employed
software setup is provided online for repeatability.?
The results of our first pilot study are promising. The
subject was able to solve all tasks and provided valu-
able feedback regarding potential enhancements for
the GUI. Although a usability experiment with one
subject does not provide reasonable results, it still in-
dicates the overall usability. Nevertheless, the former
are required. We suggest that a second experiment
with at least 30 subjects should be conducted [1].
Summarized, the experiment revealed a first indica-
tion for the necessity and usefulness of our newly de-
veloped system. Thus, the development of the Ex-
plorViz ADAMMS should be continued in the future.

4 Conclusions and Future Work

In this paper, we reported on our application discov-
ery and monitoring management system (ADAMMS)
in ExplorViz. The approach addresses the complex
and manual configuration of the Kieker framework.
We explained the architecture and procedure of our
ADAMMS and afterwards conducted a first pilot
study in order to evaluate the usability of the system.
The results show that simplifying the setup and con-
figuration of the monitoring is a useful extension to

4https://zenodo.org/record/1452411

the existing procedure. In our opinion, users are sup-
ported by our new system and thus both open source
projects ExplorViz and Kieker mutually benefit from
our approach. Future work includes improving the ap-
plication discovery and monitoring capabilities, e.g.,
by machine learning methods, which analyze, learn,
and eventually propose Kieker configurations for ap-
plications. Furthermore, we will enhance the support
of different OS platforms by introducing new PMT
interface implementations.

References

[1] J. Nielsen and T. K. Landauer. “A Mathemati-
cal Model of the Finding of Usability Problems”.
In: Proceedings of CHI. Amsterdam, The Nether-
lands: ACM, 1993.

[2] J. Nielsen. “Usability Inspection Methods”. In:
Proccedings of the CHI. Boston, Massachusetts,
USA: ACM, 1994.

[3] S. Bassil and R. K. Keller. “Software visualiza-
tion tools: survey and analysis”. In: Proceedings
of the 9th International Workshop on Program
Comprehension. May 2001.

[4] A. Holzinger. “Usability Engineering Methods for
Software Developers”. In: Commun. ACM 48.1
(Jan. 2005).

[6] B. Cornelissen et al. “Trace visualization for pro-
gram comprehension: A controlled experiment”.
In: Proceedings of the ICPC. May 2009.

[6] A. van Hoorn, J. Waller, and W. Hasselbring.
“Kieker: A Framework for Application Perfor-
mance Monitoring and Dynamic Software Anal-
ysis”. In: Proceedings of ICPE. Boston, Mas-
sachusetts, USA: ACM, 2012.

[7] F.Fittkau, A. Krause, and W. Hasselbring. “Soft-
ware landscape and application visualization for
system comprehension with ExplorViz”. In: In-
formation and Software Technology 87 (2017).

[8] C. Zirkelbach, A. Krause, and W. Hasselbring.
“On the Modernization of ExplorViz towards a
Microservice Architecture”. In: Combined Pro-
ceedings of the Workshops of the German Soft-
ware Engineering Conference. Ulm, Germany:
CEUR Workshop Proceedings, Feb. 2018.

https://zenodo.org/record/1452411

	Introduction
	The ADAMMS Approach
	Architecture
	Application Discovery and Monitoring Management

	Evaluation
	Conclusions and Future Work

