
Better a Microbenchmark on a Cluster than a User at the Office:

Flink Cluster Benchmarking

David Georg Reichelt
Universität Leipzig

dg.reichelt@uni-leipzig.de

Lars-Peter Meyer
Universität Leipzig

lars-peter.meyer@uni-leipzig.de

Stefan Kühne
Universität Leipzig

kuehne@uni-leipzig.de

Abstract

When operating an Apache Flink cluster, performance
problems may occur on all components of its setup.
Reproducing those problems in different software or
hardware components and on different nodes requires
systematic experiments. We present an Apache Flink
cluster benchmark set for server operators which is
able to measure the performance of an Apache Flink
cluster. This enables spotlighting irregularities in soft-
ware or hardware behaviour.

1 Introduction

When operating an Apache Flink cluster, many as-
pects on different levels of hardware and software de-
fine the overall performance. Flink itself provides dis-
tributed batch and stream processing usable e.g. for
event-driven, data analytics or data pipeline applica-
tions. Therefore, Flink is usually installed on a cluster
with a set of job manager nodes and worker nodes run-
ning the TaskManager. Flink uses a scheduler, which
may be Hadoops YARN, and the Hadoop File system
for operation. All components are executed on Java
VMs. These VMs are running on an operating sys-
tem, which uses its hardware. The components of our
cluster setup are visualized in figure 1.

Apache Flink

YARN HDFS

Java

Operating System

Hardware

Figure 1: Tools and our Cluster Setup of Flink

The components visualized in figure 1 and their
configuration all may contain problems affecting per-
formance. From a server operators perspective, who
has not a deep knowledge of all levels of a Flink setup,
it is hard to reproduce performance problems. We de-
fine a microbenchmark suite1 which aims for repro-
ducing such problems. By making them reproducible,

1Source Available: https://git.sc.uni-leipzig.de/

flink-benchmark/flink-benchmark

searching for reasons of irregularities is facilitated.
The microbenchmark suite is built from an operators
perspective, opposed to related work, which measures
the performance by real world use cases mainly from a
developers view. Since our workloads are very small,
we call them microbenchmarks, even if the infrastruc-
ture for executing them is complex. By using our
microbenchmark suite, we examined the clusters op-
erated at Universität Leipzig. Thereby we were able
to reproduce irregularities that users coming to our
office reported.

In the remainder of this paper, we describe our mi-
crobenchmarks in section 2 and a case study using the
microbenchmarks in section 3. Section 4 discusses re-
lated work. Finally, section 5 summarizes this paper.

2 Microbenchmark Suite

In order to define our microbenchmark suite, we first
define the requirements of this suite. Afterwards, we
describe the workloads we defined in order to bench-
mark the performance of Flink clusters and how we
ensure statistic rigor of the measurements.

2.1 Requirements

The microbenchmark suite should be usable by opera-
tors in order to check whether a clusters performance
fits its hardwares performance and whether the perfor-
mance remains constant over time. We want to detect
unusual or varying computing, RAM and HDFS per-
formance. Besides a one-time usage, the microbench-
marks should be executable as short benchmarks on
a regular basis in order to detect anomalies occurring
due to temporary reasons, e.g. non-functional cooling
or network load interference.

Furthermore, the microbenchmark suite should as-
sure statistic rigor, i.e. that repeating the same mea-
surements produces values we consider to stem from
the same distribution. This is especially complex in
Flink jobs and the tasks they consist of, since the ex-
ecution time is influenced by (1) determination and
optimization of scheduling, (2) the serialization, net-
work communication and deserialization of tasks and
(3) classloading, non-deterministic optimization and
other non-deterministic effects of JVMs [1].

https://git.sc.uni-leipzig.de/flink-benchmark/flink-benchmark
https://git.sc.uni-leipzig.de/flink-benchmark/flink-benchmark

2.2 Workloads

In order to check whether computing performance,
RAM performance or HDFS access performance dif-
fers, we create a workload for each performance mea-
sure. Each workload is a Flink job which is executed
on a cluster. For every job the execution time sep-
arately. Furthermore, each workload has a variable
size and parallelism. The parallelism defines on how
many workers the tasks of a job are distributed. The
following benchmarks are implemented:

In order to benchmark computing performance,
size ∗ factor additions are executed. These are
grouped into N (Default: 100) map jobs. Those jobs
contain size∗factor

N additions. Therefore, the network
traffic is not increased with increasing benchmark size.

In order to benchmark RAM performance, the
benchmark reserves size ∗ factor bytes of RAM. In
every job, a random count of indices of the array is
initialized with a random value. Afterwards, the same
count of random indices are added. The sum of the
random indices is the result of the job. Therefore, the
array is not erased by optimization in OpenJDK 8.

In order to benchmark IO performance, we imple-
mented a HDFS write and a HDFS read bench-
mark. These benchmarks use a mapping function as
main building block and write or read size ∗ factor
bytes of data to or from HDFS and return the
throughput as map result. As HDFS supports only
append operations, the write benchmark creates se-
quential output per mapping thread. The read bench-
mark consists of sequential read operations with ran-
dom offsets.

2.3 Statistic Rigor

In order to make our measurements comparable, they
need to be executed until the measurement values
reach its steady state. We assume that the measure-
ments are gaussian distributed. Therefore, we con-
sider the steady state as being reached if the two-
sample t-test with confidence level 99% does not reject
the null hypothesis that the means of both distribu-
tions are equal.

In order to determine when repeating the measure-
ments produces equal results, we started 100 jobs with
25 iterations of every workload with sizes 10000, 20000
and 40000 each on our Flink cluster. We found that
the t-test does not reject the null hypothesis for two
samples build from measurement 5 to 15 and the last
10 measurements. Therefore, we execute every mea-
surement 25 times and use the last 10 measurements.

3 Case Study

At Universität Leipzig, we are operating two Hadoop
clusters. We used the microbenchmark suite in order
to examine whether the Flink performance of the clus-
ters fits their hardware and whether irregularities over
time occur. At first, we compared the performance of
Flink to the local execution of the same workload and

Worker@Cluster1 Worker@Cluster2

CPUs 2 Xeon R©, 2.4GHz 1 Xeon R©, 2.5GHz
Model E5-2620v3 E5-2430v2
RAM 128 GByte 48 GByte
HDDs 5x4TB SATA 2x4TB SATA
Ethernet 10 GBit/s 1 GBit/s
OS CentOS 7.6 openSUSE 13.2

Table 1: Hardware of the Clusters Used

 1000

 10000

 100000

 1x109 1x1010 1x1011

D
u
ra

ti
o
n
 i
n
 m

s

Workloadsize (Addition Count)

Local
Cluster 1
Cluster 2

Figure 2: Add-Benchmark Execution Time

afterwards, we compared multiple Flink executions on
both clusters. We used Flink 1.5 on top of YARN
together with Java 1.8. Both clusters consist of 16
workers and use no virtualization, for the hardware
see table 1.

3.1 Comparison with Local Execution

In order to find out how much overhead an execu-
tion in Flink produces compared to the execution in
a local Java VM, we run the workloads in both en-
vironments. We used the same hardware for this,
i.e. we used a cluster node with deactivated Flink for
the local execution. For Flink, the initialization time,
ExecutionGraph creation and sending input data via
the network to the TaskManager is expected to cre-
ate overhead. In order to determine the amount of
overhead, we executed the workloads with exponen-
tial computation size growth on the local server and
in both clusters. The average measurement results of
the add-benchmark are visualized in figure 2. While
in the beginning the computation time is considerably
higher for Flink execution, the computation time does
not grow faster with Flink. We deduce that our clus-
ters use their full CPU power as expected and are
slown down by the overhead of Flink.

3.2 Comparison between Flink Execu-
tions

We examined whether there are performance irreg-
ularities during long-term operation of the clusters.
Therefore, we executed our microbenchmarks over 5
days every hour on both clusters. Figure 3 shows the
frequency of execution durations of our clusters with
an exponential scale to improve the outliers visibility.

We found that execution times differed across the
cluster and that Cluster 1 had a higher variance
and some outliers. This matches with users com-

2

 1

 10

 100

 1000 1500 2000 2500 3000

C
o
u
n
t

Duration in ms

Cluster 1
Cluster 2

Figure 3: Histogram of Execution Durations

plains about performance irregularities on Cluster 1.
Other measurements have shown equal performance
for RAM benchmarks and worse performance of Clus-
ter 1 for HDFS performance. Unfortunately, we are
not finished finding the root cause of the outliers or
the higher variance in computing performance. Never-
theless, the microbenchmark suite gives us a starting
point for reproducing and debugging this problem.

4 Related Work

There exists related work (1) benchmarking Apache
Flink from users perspective and (2) benchmarking
HDFS from an operators perspective.

Benchmarks for Flink from users perspective (1)
are included in the HiBench Suite [2]. HiBench con-
sists of different user-driven workloads, e.g. using k-
means for clustering randomly generated data. Hi-
Bench can benchmark different Big Data Frameworks,
including Flink and Hadoop. Another benchmark
for Flink is BigBench [3] which got standardized by
the Transaction Processing Performance Council as
TPCx-BB [5]. While those benchmarks only use Flink
alone, other benchmarks use whole real world produc-
tion scenarios for benchmarking, including the use of
other tools, like Kafka and Redis [4] [6]. While those
benchmarks are built from a usage perspective and
define use cases similar to real world applications, our
rationale is to provide a comparison from a server op-
eration perspective focussing on small benchmarks.

Benchmarks focussing on HDFS include TestDFS-
IO, included in Hadoops source code2, and the en-
hanced TestDFSIO, included in the HiBenchSuite.
These benchmarks do not include Apache Flink but
use HDFS in a direct manner.

Acknowledgements

This work was funded by the German Federal Min-
istry of Education and Research within the project
Competence Center for Scalable Data Services and So-
lutions (ScaDS) Dresden/Leipzig (BMBF 01IS14014B
and BMBF 01IS18026B) and a PhD scholarship of
Hanns Seidel Foundation. Computations for this work
were done with resources of Leipzig University Com-
puting Centre.

2Source location: TestDFSIO.java in http://www-eu.

apache.org/dist/hadoop/common/hadoop-2.7.7/hadoop-2.7.

7-src.tar.gz

5 Summary

In order to benchmark the performance of Apache
Flink clusters, we defined a microbenchmark suite
which is capable of finding irregularities in Flink clus-
ter performance. The microbenchmark suite consists
of different benchmarks using CPU, RAM and HDFS-
I/O. We used them on our clusters and found that,
while they are basically operating as expected, per-
formance variation is higher on one cluster. Since
users complained about this cluster, we will further
investigate this issue.

In order to address this issue, we will search the logs
of Flink, of HDFS and of the clusters operation sys-
tems and examine reasons for this behavior. Further-
more, we will add more workloads, e.g. focusing on
network communication. Another possible extension
of this work is implementing the workloads separately
for all components, i.e. for Hadoop, HDFS, Java and
as binary for the OS, in order to experimentally find
out which component is causing problems.

References

[1] A. Georges, D. Buytaert, and L. Eeckhout. “Sta-
tistically rigorous java performance evaluation”.
In: ACM SIGPLAN Notices 42.10 (2007), pp. 57–
76.

[2] S. Huang et al. “The HiBench Benchmark Suite:
Characterization of the MapReduce-Based Data
Analysis”. In: New Frontiers in Information and
Software as Services: Service and Application De-
sign Challenges in the Cloud. Ed. by D. Agrawal,
K. S. Candan, and W.-S. Li. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 209–228.

[3] A. Ghazal et al. “BigBench: towards an industry
standard benchmark for big data analytics”. In:
Proceedings of the 2013 ACM SIGMOD Interna-
tional Conference on Management of Data. New
York, New York, USA: ACM, 2013, pp. 1197–
1208.

[4] S. Chintapalli et al. “Benchmarking Streaming
Computation Engines: Storm, Flink and Spark
Streaming”. In: 2016 IEEE International Paral-
lel and Distributed Processing Symposium Work-
shops (IPDPSW). 2016, pp. 1789–1792.

[5] P. Cao et al. “From BigBench to TPCx-BB: Stan-
dardization of a Big Data Benchmark”. In: Per-
formance Evaluation and Benchmarking. Tradi-
tional - Big Data - Internet of Things. Ed. by R.
Nambiar and M. Poess. Cham: Springer Interna-
tional Publishing, 2017, pp. 24–44.

[6] S. Yang et al. “Scalability and State: A Crit-
ical Assessment of Throughput Obtainable on
Big Data Streaming Frameworks for Applications
With and Without State Information”. In: Par-
allel Processing Workshops. Ed. by D. B. Heras
et al. LNCS. 2018, pp. 141–152.

3

http://www-eu.apache.org/dist/hadoop/common/hadoop-2.7.7/hadoop-2.7.7-src.tar.gz
http://www-eu.apache.org/dist/hadoop/common/hadoop-2.7.7/hadoop-2.7.7-src.tar.gz
http://www-eu.apache.org/dist/hadoop/common/hadoop-2.7.7/hadoop-2.7.7-src.tar.gz

	Introduction
	Microbenchmark Suite
	Requirements
	Workloads
	Statistic Rigor

	Case Study
	Comparison with Local Execution
	Comparison between Flink Executions

	Related Work
	Summary

