
Towards Model-based Performance Predictions of SAP Enterprise

Applications

Adrian Streitz, Maximilian Barnert, Johannes Rank,
Harald Kienegger and Helmut Krcmar

Technical University of Munich
85748 Garching, Germany

{adrian.streitz, maximilian.barnert, johannes.rank,
harald.kienegger, krcmar}@in.tum.de

Abstract

High-performing Enterprise Applications are the ba-
sis for efficient running business processes. In order
to evaluate software performance, traditional meth-
ods refer to complex test scenarios following the de-
velopment phase and neglect that problems are eas-
ier fixable when discovered early. This paper tack-
les the problem of late performance evaluations and
presents a conceptual approach that enables response
time predictions for SAP Enterprise Applications dur-
ing the development phase. We introduce a perfor-
mance model generator that transforms ABAP source
code into Palladio Component Model instances by us-
ing Abstract Syntax Trees which allows to conduct
early performance simulations. Our approach sup-
ports conditional and probabilistic control flows to
improve prediction accuracy. Based on subsequent
performance simulations, we predict response time of
applications and their underlying processing systems.

1 Introduction

Performance, considering response time, resource con-
sumption and throughput, has become an important
key factor for today’s application systems [4]. Fur-
thermore, the efficiency of software systems corre-
lates with a company’s revenue [9]. Although applica-
tion costs become more expensive the later software
changes are performed, traditional software engineer-
ing methods still conduct performance evaluations af-
ter the application’s development [1].

Tůma (2014) introduced the concept of Perfor-
mance Awareness [6] to counteract this problem. His
idea is based on observing software performance dur-
ing the development phase and providing support to
react upon them. However, we have shown in our pre-
vious work that most software developers miss dedi-
cated performance skills, which hinders a significant
improvement in software performance [10]. To re-
duce complexity of manually creating test scenarios
and long-running evaluations, we propose to generate
performance models automatically and conduct sim-

ulations to retrieve performance predictions.
Until now, model extraction approaches are mainly

focused on the Java domain. Although Enterprise Re-
source Planning (ERP) software is highly used in in-
dustry, it is still neglected for performance consider-
ations. SAP, as the most common representative for
ERP software [5], is based on its own programming
language ABAP. Due to existing differences between
ABAP and Java, it requires to adapt performance
modeling for the ABAP development domain.

Our paper presents an approach that transforms
ABAP source code automatically into Palladio Com-
ponent Model (PCM) instances by the intermediate
step of using Abstract Syntax Trees (ASTs). Existing
specialties of ABAP (e.g. object-oriented and proce-
dural programming paradigm) make it necessary to
introduce a new code-to-model-transformation with
parametrizations which include basic operations, as
well as external calls to existing components.

2 Related Work

There is a long tradition in predicting performance
metrics of software applications. They are mainly
based on either component measurements or formal
descriptions with automata simulations. The latter
include performance models such as PCM [3].

Kappler et al. (2008) present a process to gener-
ate PCM instances from Java by combining static and
dynamic code analysis [2]. The static analysis parses
source code into ASTs that represent their structure
and control flow. The dynamic analysis is based on
behavioral specifications which are derived from exe-
cutions and analyzed with statistical methods.

Danciu et al. (2015) showed an approach to pro-
vide Java EE developers predicted performance met-
rics during the implementation phase [7]. For this
purpose, Java source code is transformed into PCM
instances and enables the conduction of static perfor-
mance analysis. In addition, calls to external com-
ponents are parameterized with values provided by
the Kieker monitoring framework. The approach is
integrated into the programmer’s IDE and provides



immediate feedback to the developer.
Keller et al. (2016) argue that current approaches

neglect software’s design and specification phases [8].
They present a software specification tool which ad-
dresses the transition issues by employing a Meta Pro-
gramming System that makes it easier to move per-
spectives between different life-cycle stages. The ap-
proach allows source code annotations of performance
requirements and is able to transform the code into
PCM instances for simulation purpose.

3 Approach

Based on characteristics of the SAP application
server, we created a performance model generation
process for SAP Enterprise Applications. Unlike other
commercial software, the source code of these systems
is accessible and provides context information for fur-
ther analysis. Additionally, they store and provide
runtime measurements of existing applications.

Figure 1: Conceptual Approach

Our developed approach consists of four stages: (1)
AST handling, (2) PCM transformation, (3) integra-
tion of performance records and (4) model simulation
to gain performance estimations. The software archi-
tecture and the main steps are depicted in Figure 1.

The first step starts with transforming ABAP
source code into ASTs. The approach requires a pack-
age with one or multiple source files. To tackle soft-
ware modularization and distributed files, we chose
ASTs as intermediate artifact that are able to rep-
resent entire applications in one XML structure and
support multiple programming languages.

Secondly, the ASTs are parsed and transformed
into PCM instances. Since ASTs only provide struc-
tural information, we need to parameterize the PCM
instance. The Performance Records Provider compo-
nent complements the necessary information by en-
riching the model with parametrization data.

SAP offers a broad range of built-in tools to mea-
sure performance metrics. Our purpose is to make this
data externally available. The component SAP Met-
rics Provider receives requests, conducts performance
measurements, and exports the gained information.
Afterwards, the SAP Performance Adapter parses the
records and stores them in a separate Performance

Knowledge Database. The external database leads to
a reduction of workload on the SAP system by provid-
ing available performance data directly. Furthermore,
it is able to aggregate performance results referring to
same operations to avoid statistical outliers.

The final step concludes with a model simulation
and results with performance estimations of the in-
spected application. Basis for the simulation is the
enriched PCM instance, which serves as input for the
simulation engine.

function x(input)
if input = true then

variant A() . long execution time
else

variant B() . short execution time

(a) Guarded Branch (b) Probabilistic Branch

Figure 2: Conditional Branch Types

One feature of our transformation is to support
both conditional and probabilistic if statements. In
contrast to other approaches that are solely based on
probability distribution, our model allows predictions
of dedicated code paths instead of simulating all ex-
isting control flows. In certain cases, this leads to
more precise predictions if one branch consumes sig-
nificantly more performance than others do.

Figure 2 shows an example where either variant A
(long execution time) or variant B (short execution
time) is called depending on the input value of func-
tion x. If we are able to evaluate the value of input,
we transform the provided code into a guarded (see
Fig. 2a), otherwise a probabilistic branch with equal
distribution (see Fig. 2b).

By applying our approach, developers do not only
get insight about the overall execution behavior, but
also how input values influence the resulting perfor-
mance. Since conditional branches sometime lead to
complex expression and static code analysis cannot
trace all dynamic values, we propose a mixed trans-
formation approach that uses probabilistic branches
as fallback for non-resolvable conditions.

2



4 Experiment

We chose for our experiment an application that de-
termines ABAP code clones. The application con-
tains procedural, as well as object-oriented instruc-
tions. In addition, parts of the entire application are
outsourced by several include files. Furthermore, it
contains nested loops and branches and uses branch
conditions that affect external call actions. The ap-
plication offers two execution variants (A and B) with
different response time behavior to calculate similarity
of source files. In order to measure the application’s
response time behavior, we used the built-in SAP tool
ABAP Code Inspector.

We setup a virtual machine with 0.5 processing
units and 22 gigabytes memory. As application server,
we installed SAP NetWeaver 7.4 SP16 on top of an
IBM DB2 10.5.5 database and IBM AIX 6.1. Our
hardware platform is equipped with an IBM Power
E870 server based on 40 cores (4.19 GHz) and 4 ter-
abytes memory.

Variant A Variant B
0

2

4

R
es

p
on

se
ti

m
e

in
se

co
n

d
s MRT

SRT

Figure 3: Measured and Simulated Response Times

A bar chart of the measured response time (MRT)
and the simulated response time (STR) is depicted in
Figure 3. For variant A, the average MRT is 5.21 sec-
onds and the average SRT 5.10. This results in an ac-
curacy of 97.89 %. However, response time predictions
of variant B resulted in an accuracy of 83.39 %. Our
analysis show that the approach yields accurate per-
formance results if good parametrization metrics are
available. The deviations in variant B mainly occur
because not all branches could be resolved correctly
and were treated probabilistic.

5 Conclusion

The paper fills the missing consideration of model-
based performance predictions for ERP software and
presents an approach to transform ABAP applications
into PCM. With our approach, developers can de-
tect performance issues immediately during the de-
velopment phase and avoid problems of late software
changes. Since prediction and simulation are fully au-
tomated, developers neither need to conduct perfor-

mance evaluations manually, nor require any expertise
of the performance engineering domain. In order to re-
trieve more precise prediction values, the transforma-
tion process supports both conditional and probabilis-
tic control flows. Our long-term vision is to extend our
approach by considering CPU utilization and the in-
tegration into Eclipse IDE to highlight performance
bottlenecks in the developed source code directly.

References

[1] B. W. Boehm and P. N. Papaccio. “Understand-
ing and controlling software costs”. In: IEEE
Transactions on Software Engineering 14.10
(1988), pp. 1462–1477.

[2] T. Kappler et al. “Towards Automatic Con-
struction of Reusable Prediction Models for
Component-Based Performance Engineering”.
In: Software Engineering 121 (2008), pp. 140–
154.

[3] S. Becker, H. Koziolek, and R. Reussner. “The
Palladio component model for model-driven
performance prediction”. In: Journal of Systems
and Software 82.1 (2009), pp. 3 –22.

[4] A. Brunnert et al. “Performance Management
Work”. In: Business & Information Systems En-
gineering 6.3 (2014), pp. 177–179.

[5] Computerwoche. Market share of leading com-
panies in enterprise resource planning (ERP)
software in Germany from 2011 to 2013. 2014.

[6] P. Tůma. “Performance Awareness: Keynote
Abstract”. In: Proceedings of the 5th
ACM/SPEC International Conference on
Performance Engineering. ICPE ’14. Dublin,
Ireland: ACM, 2014, pp. 135–136.

[7] A. Danciu et al. “Performance Awareness in
Java EE Development Environments”. In: Pro-
ceedings of the 12th European Workshop on
Performance Engineering. EPEW ’15. Madrid,
Spain: Springer, 2015, pp. 146–160.

[8] F. Keller et al. “Leveraging Palladio for Perfor-
mance Awareness in the IETS3 Integrated Spec-
ification Environment”. In: Softwaretechnik-
Trends 36.4 (2016).

[9] C. Heger et al. “Application Performance Man-
agement: State of the Art and Challenges for the
Future”. In: Proceedings of the 8th ACM/SPEC
on International Conference on Performance
Engineering. ICPE ’17. L’Aquila, Italy: ACM,
2017, pp. 429–432.

[10] A. Streitz et al. “Performance Improvement
Barriers for SAP Enterprise Applications: An
Analysis of Expert Interviews”. In: Proceedings
of the 9th ACM/SPEC International Confer-
ence on Performance Engineering. ICPE ’18.
Berlin, Germany: ACM, 2018, pp. 223–228.

3


	Introduction
	Related Work
	Approach
	Experiment
	Conclusion

