
Designing Software Transparency: A Multidisciplinary Endeavor

Larissa Chazette*, Melanie Busch*, Maximilian Schrapel†, Kai Korte‡ and Kurt Schneider*
{larissa.chazette, melanie.busch, kurt.schneider}@inf.uni-hannover.de, schrapel@hci.uni-hannover.de,

wendt@iri.uni-hannover.de
Leibniz Universität Hannover

*Software Engineering Group, † Human-Computer Interaction, ‡ Institute for Legal Informatics

Category: Research Preview
Target Group: Requirements Engineers and Re-
searchers

Context and Motivation Software systems sup-
port end-users in making daily decisions, thanks to
ubiquituous computing. As long as the system be-
haves in accordance to users’ expectations, the user
continues to trust the system. In the case of unex-
pected software behavior, there is often a lack of trans-
parency and comprehensibility, since the user cannot
understand the reason for the resulting behavior. In
such situations, the system appears like a black box:
it delivers results but lacks transparency, since it is
difficult for users to apprehend how results were gen-
erated.

An extensive variety of requirements can be in-
volved when we consider software transparency.
These requirements are, most of the times, interre-
lated in a complex network, influencing each other. As
Requirements Engineers, we believe that, to achieve
software transparency, different knowledge areas need
to be involved in the requirements process, in a multi-
disciplinary fashion. Different perspectives need to be
assessed in order to correctly understand what needs
to be tackled in the project and what it represents
in terms of requirements. In this paper, we explore
the opportunities of a multidisciplinary work and the
possible challenges in achieving software transparency.
We use a navigation scenario to explore the possibil-
ities in terms of a system. The expected result of
this joint dialogue is to identify challenges and con-
straints in the requirements operationalization, in the
requirements process itself, and discuss adequate ways
to overcome them.

Scenario Jane would like to use a navigation app
and look up a route on her smartwatch. She is in a
foreign city and she chooses the shortest route to a
point of interest. On her way, the software suddently
suggests to take another route, even though she fol-
lowed all the instructions and she is almost at the
destination. The system does not present any justi-
fication for the change and she is not sure why the
system decided for another route. In this scenario,

some alternatives can be named to justify the sudden
change: the road may be closed because of an inci-
dent, or this is due to a technical error, e.g., a radio
tower shut down and the GPS is not accurate enough
on her device. Jane does not understand what is hap-
pening and she asks herself whether she should trust
the system anyways.

Understanding system decisions is an essential step
towards software transparency. An improved under-
standing may be achieved through explanations. Ex-
plainability, in the software context, is the software
ability to provide explanations and clarify questions
about, e.g., how the system comes to its decisions. It
can be used to increase users’ awareness of the rea-
sons behind the system decision making and of data
collection. Explainability is a non-functional require-
ment (NFR) which impacts directly on software trans-
parency [1].

Data transparency is another important aspect to
consider towards software transparency. When us-
ing such devices, large amounts of data are collected,
recorded, and sometimes forwarded. The internal pro-
cesses, what kind of data is being collected and the
purpose of this data collection are not clearly visible
to the user. Data has to be collected to provide some
of the functionalities in the system. Such functionali-
ties may present several advantages and facilitate the
end-users’ lives. But end-users also know little about
which data influenced the software decisions and the
reason they need to share their data.

End-users used to be less conscious about data
sharing in the context of software systems. This per-
ception is starting to change as a consequence of pub-
lic data breaches scandals. With the ever-growing per-
vasive nature of software, ethical principles that foster
software transparency need to be considered in a soft-
ware project and treated as key design concerns. Some
concerns include security, privacy, data management,
and explainability. Those quality concerns that help
to enable system transparency at many levels [2].

Requirements Engineering The corresponding
requirements process comprises the identification of
NFRs, their interdependencies and how they will im-
pact on other system qualities and functionality. The



use of disseminated models such as goal models is
an essential way to understand the interrelations be-
tween the requirements within the system and how
they translate into functionalities. It is also possi-
ble to assess the trade-offs between what is expected
of the system and what is possible in terms of hard-
ware (e.g., smartwatch) and other constraints. Re-
quirements workshops can be held to have a better
view about the problem at hand, gathering knowl-
edge from different perspectives. The experience and
know-how of participants may facilitate the identifi-
cation of the challenges and opportunities involved,
leading to well-suited and realistic solutions.

Using the scenario above, software engineers
worked together with a law scholar and a human com-
puter interaction specialist. We assessed their per-
spectives on the same problem, in the implementation
of two NFRs that help to build more transparency in
software: privacy (towards data transparency) and ex-
plainability. Next, we present the first step towards
this joint discussion.

Human-Computer Interaction An important
aspect to consider is the difference between user
groups. Each user group has a different need for in-
formation regarding the system states and, therefore,
different explanation needs. Since we cannot assume
that the user has a technical understanding of the sys-
tem, instructions may be kept as simple as possible.
Wrong position data or blocked pathways can be visu-
alized in a map view to increase explainability. How-
ever, due to the small display size, there is little space
to show information about the current system state.
Using Nielsens principles [3], often only arrows are
displayed, which results in less transparency. Like-
wise, errors in route selection cannot be easily traced
by the user. Further information, such as explana-
tions of route modifications, can also be given in an
auditory way but such feedback methods may also be
perceived as obtrusive. Therefore, how explainability
will be operationalized and its impact on the inter-
face and on the interaction is strongly dependent on
context, user and the system.

Privacy-by-Design Privacy-by-Design refers to
the approach that data protection must be proactively
embedded into the design and architecture of an ICT
system [4]. This approach can save time to improve
existing data processing systems and address existing
data protection issues. It also protects users’ rights,
strengthens their confidence in the technologies they
use, and ensures organizational accountability from
the beginning [5]. Privacy-by-design follows an ap-
proach in which the basic settings of the technology
are configured so that only the really necessary data is
processed. Thus, the principles of data avoidance and
data economy are also met and the user can config-
ure all further data processing conditions on his own

responsibility.
In practice, this means that the different areas must

be coordinated right from the beginning. The objec-
tives, purposes and software requirements, as well as
the necessary processing operations, should be com-
pared with and aligned to the legal requirements. The
objectives and purposes of data processing should be
defined in joint discussions in order to comply with the
principles stipulated in Art. 5 GDPR. Moreover, the
data processing must be adapted to the requirement
of data minimization, as well as technical and organi-
zational measures. Concept notes and data flow dia-
grams are approaches explicitly suggested to support
the analysis of such requirements by data protection
experts. For this analysis process, technicians and
lawyers need to come together to outline objectives
and purposes, mapping the data flows, and designing
a coherent infrastructure.

Further Steps We aim to put theory into practice
in an interdisciplinary collaboration, with the goal of
jointly plan a software prototype in the context of
smart mobility. One of the main objectives of this
collaboration is to understand how more transparency
can be achieved in software systems and what it im-
plies for the requirements engineering process.

We also want to explore what kind of strategies
should be developed, as well as which methods should
be used, in order to facilitate 1) the interdisciplinary
work itself and 2) the analysis of these transparency-
related requirements. As next step, we will conduct a
workshop for goal analysis, identification of trade-offs,
and strategies for interdisciplinary collaboration.

References

[1] L. Chazette, O. Karras, and K. Schneider, “Do
end-users want explanations? analyzing the role
of explainability as an emerging aspect of non-
functional requirements,” in Proceedings of the
2019 IEEE 27th International Requirements En-
gineering Conference (RE). IEEE, 2019.

[2] I. Ozkaya, “Ethics is a software design concern,”
IEEE Software, vol. 36, no. 3, pp. 4–8, 2019.

[3] J. Nielsen, “Enhancing the explanatory power of
usability heuristics,” in Proceedings of the SIGCHI
conference on Human Factors in Computing Sys-
tems. ACM, 1994, pp. 152–158.

[4] A. Cavoukian and M. Dixon, Privacy and se-
curity by design: An enterprise architecture ap-
proach. Information and Privacy Commissioner
of Ontario, Canada, 2013.

[5] D. Van Rooy and J. Bus, “Trust and privacy in the
future interneta research perspective,” Identity in
the Information Society, vol. 3, no. 2, pp. 397–404,
2010.


