
Using Interaction Logs for Creation and Maintenance of Trace Links

Paul Hübner and Barbara Paech

Institute for Computer Science, Heidelberg University
Im Neuenheimer Feld 205, 69120 Heidelberg, Germany

huebner,paech@informatik.uni-heidelberg.de

1 Problem and Motivation

We present an innovative, data-driven solution to an
old requirements engineering problem [1]. Trace links
between requirements and source code are beneficial
for many software engineering tasks during develop-
ment, e.g. maintenance, program comprehension and
reengineering [2]. If trace links are created and used
continuously during a project, they need to have high
precision (correctness) and recall (completeness) to be
useful. In addition, it is necessary to keep trace links
up-to-date for the continuous usage of the links dur-
ing a project. Thus, maintenance of links along with
changes in linked artefact is essential [3].

To ease burden of linking for the developers, auto-
matic linking approaches have been proposed. Most
of them use the textual contents of artefacts together
with information retrieval (IR) and do not consider
the maintenance of links [4]. Such approaches are of-
ten intended for a once in a time retrospective applica-
tion for specific purposes, such as verification that all
requirements are implemented, or to justify the safe
operation of a system [5]. These approaches focus on
high recall and accept the burden of manual process-
ing the automatically generated link candidates [6].
For link maintenance such approaches favour the com-
plete regeneration of all links by simply reapplying the
link creation.

In summary, existing automatic trace link creation
approach are not capable to continuously provide and
maintain links with high precision for direct usage by
developers during a project. In practice, developers
trace requirements to code often by manually linking
requirements from an issue tracker system (ITS) to
code in a version control system (VCS) by providing
issue IDs in commit messages. However, this has typ-
ically quite low recall [7].

We therefore extended the commit linking by data
captured from developers work. In our completely
automatic approach ILCom, we use interaction logs
recorded in an IDE while a developer is working on
code files to implement a requirement. To assign the
recorded interaction logs automatically to the require-
ment worked on, ILCom uses the issue IDs of require-
ments provided by developers in commit messages.
This enables continuous link creation after each com-
mit without manual effort from the developers.

We evaluated our approach in several studies and
showed that ILCom can create trace links with almost
perfect precision and recall as good as IR [8]. In our
presentation we introduce ILCom and the results of
the evaluation studies. Further we sketch how main-

tenance of existing links along with changes in linked
artefacts can be integrated in ILCom.

2 ILCom Approach

Figure 1 shows the three steps of the ILCom approach.
In the first step interactions of developers with source
code files are recorded in an IDE. When a developer
performs a commit to a VCS like Git, and provides
an issue ID in the commit message, the recorded in-
teractions since the last commit, are assigned to the
issue with this ID.

In the second step the assigned interaction logs are
used to create trace links. First, interaction events
from the logs are restricted to events with code files,
directly triggered by the developer, and in certain IDE
parts (Editor, Navigator). The files touched in these
events are linked to the issue. In addition to the event
type and the IDE part, each link is attributed with the
frequency and duration for the link. The frequency is
the number of interaction events, and the duration is
the sum of all durations of interaction events used for
the link.

In the third step the attributes of a link and the
source code structure (SCS), i.e. references between
source code files, are used to remove potential wrong
links and add further potential correct links. For the
removal threshold values for the attributes are used,
e.g. only links with a certain duration, frequency, IDE
part or interaction type. Furthermore, only code files
which are also connected by SCS with each other are
linked to an issue. Then SCS is used to add further
links. Code files referenced by a file which is already
linked to an issue are linked to that issue as well.

Table 1: Evaluation Results for ILCom, ComL and IR

App-
roach

Pre-
cision

Re-
call

#Links

CE TP FP GS FN

ILCom 0.900 0.790 271 244 27 309 65
ComL 0.675 0.443 203 137 66 309 172
IR 0.369 0.557 466 172 294 309 137

* For IR, the vector space model (VSM) technique with a simi-
larity threshold of 0.2 was used

* created (CE), true positive (TP) =̂ correct, false positive (FP)
=̂ wrong, gold standard (GS), false negative (FN) =̂ not found

We compared ILCom in different studies with com-
mit based linking (ComL), i.e. link creation based on
issue IDs from commit messages and changed files of
commits, and IR. Table 1 shows the overview of the
results of the last evaluation study [8]. In the study



(1) Interaction Capturing
Capture of Interactions

Implementation 
in IDE during Requirement

Frequency Event Types Duration

Impl. Artefacts
from VCS

Requirements
from ITS

(2) Trace Link Creation

Interaction Log Aggregation

F D E

Trace
Links

(Initial)

Inter-
action
Log

Set-
tings

(3) Trace Link Improvement
Improvements
* Precision
* Recall

F D ESCS

Source Code Structure
Generation 

Trace
Links
(Final)

(n) Approach Step

Data Processing Data usage

Sequence Flow

DataF

Figure 1: ILCom Approach: (1) Interaction Capturing, (2) Trace Link Creation and (3) Improvement

ILCom has created links with almost perfect precision
of 90% and good recall of 79%. It outperformed the
other link creation techniques.

3 Trace Link Maintenance

During a literature review on trace link maintenance
(TM) we identified a general TM process describe in
the following paragraph. The process consists of 4
steps separated in an impact detection and execution
part. The impact detection part consists of the detec-
tion of a change in linked artefacts and the subsequent
detection of impacted links. The resulting output con-
tains the impacted artefacts and links and potential
further data for the next steps. The change execu-
tion part consists of the determination of necessary
link changes based on the previously generated out-
put and the execution of those changes.

We selected TM capabilities from two approaches
identified in our literature review and used them to
extend ILCom. These approaches use the same arte-
facts as ILCom and are fully automated.

The detection of change in ILCom is performed au-
tomatically after each commit by evaluating the in-
teraction types. A change is indicated by an edit in-
teraction.

The detection of impacted links is performed by the
adapted impact rules from the two TM approaches
and ILCom-specific rules. The rules from the approach
of Ghabi and Egyed [9], use the SCS references be-
tween methods to calculate the proximity of meth-
ods to already linked requirements. For the impacted
link detection an adjustable threshold for the proxim-
ity is used. The rules from the approach of Rahimi
and Cleland-Huang [3], use textual differences be-
tween two artefact versions to detect certain refactor-
ings. An example for a refactoring is extract method to
class. In this refactoring all links referring to the class
are considered as impacted. In addition in ILCom the
recorded interactions are used to detect refactorings.
IDEs provide capabilities to perform certain refactor-
ings, like extract method to class. Such refactorings
are directly detected in the interactions. Furthermore,
patterns of low level interactions which comprise the
interaction sequence of a certain refactoring are de-
fined and automatically detected in the interactions.

All three kind of impact detection rules output a
change type. Based on that, the determination of
necessary link change and execution of change is per-
formed fully automated in ILCom, i.e. change type
specific rules perform the removal of existing links and

adding of missing links. Links are removed/added
if the proximity score of a method drops/rises be-
low/above the specified threshold. For detected refac-
torings either by interactions or textual differences,
refactoring specific link change rules are defined, e.g.
when detecting the extract method to class refactor-
ing, links are moved to the newly created class.

4 Conclusion

Our ILCom approach is the first trace link creation
and maintenance approach with very good precision
and recall which does not require any manual work
from the developers besides the common commit-
based linking.

Our future work will be to implement the presented
TM extension of ILCom and perform an evaluation
of the effects on precision and recall of continuously
maintained links. Also, a study in which ILCom-
created and -maintained links are continuously pro-
vided and used by developers during a project is part
of our research agenda.

References
[1] W. Maalej, M. Nayebi, T. Johann, and G. Ruhe, “Toward

Data-Driven Requirements Engineering,” IEEE Software,
vol. 33, no. 1, pp. 48–54, 2016.

[2] P. Mäder and A. Egyed, “Do developers benefit from re-
quirements traceability when evolving and maintaining a
software system?” Empir. Software Eng., vol. 20, no. 2,
pp. 413–441, 2015.

[3] M. Rahimi and J. Cleland-Huang, “Evolving software
trace links between requirements and source code,” Empir.
Software Eng., vol. 23, no. 4, pp. 2198–2231, 2018.

[4] M. Borg, P. Runeson, and A. Ardö, “Recovering from a
decade: a systematic mapping of information retrieval ap-
proaches to software traceability,” Empir. Software Eng.,
vol. 19, no. 6, pp. 1565–1616, 2014.

[5] L. Briand, D. Falessi, S. Nejati, M. Sabetzadeh, and T.
Yue, “Traceability and SysML design slices to support
safety inspections,” ToSEM, vol. 23, no. 1, pp. 1–43, 2014.

[6] J. Cleland-Huang, O. C. Z. Gotel, J. Huffman Hayes, P.
Mäder, and A. Zisman, “Software traceability: trends and
future directions,” in FOSE, ACM, 2014, pp. 55–69.

[7] M. Rath, J. Rendall, J. L. C. Guo, J. Cleland-Huang, and
P. Mäder, “Traceability in the Wild: Automatically Aug-
menting Incomplete Trace Links,” in ICSE, IEEE, 2018,
pp. 834–845.

[8] P. Hübner and B. Paech, “Increasing Precision of Auto-
matically Generated Trace Links,” in REFSQ, Springer,
2019, pp. 73–89.

[9] A. Ghabi and A. Egyed, “Code patterns for automat-
ically validating requirements-to-code traces,” in ASE,
IEEE/ACM, 2012, pp. 200–209.


	Problem and Motivation
	ILCom Approach
	Trace Link Maintenance
	Conclusion

