Sharing and Exploiting Requirement Decisions

Anja Kleebaum!, Jan Ole Johanssen?, Barbara Paech!, and Bernd Bruegge?

"Heidelberg University, Heidelberg, Germany, {kleebaum, paech}@informatik.uni-heidelberg.de
2Technical University of Munich, Munich, Germany, {jan.johanssen, bruegge}@in.tum.de

1 Introduction

Continuous software engineering is an agile devel-
opment process that puts particular emphasis on
the incremental implementation of requirements and
their rapid validation through user feedback. This
involves frequent and incremental decision making,
which needs to be shared within the team. Require-
ments engineers and developers have to share their de-
cision knowledge since the decisions made are partic-
ularly important for future requirements. It has been
a vision for long that important decision knowledge
gets documented and shared [1]. However, several
reasons hinder requirements engineers and developers
from doing this, for example, the intrusiveness and
overhead of the documentation [2]. Current software
development tools provide opportunities to minimize
the overhead. Issue tracking and version control sys-
tems offer lightweight documentation locations, such
as issue comments, commit messages, and code com-
ments. With ConDec, we develop tool support for the
continuous management of decision knowledge that
uses techniques for natural language processing and
integrates into tools that developers often useﬂ for
example, into the issue tracking system Jiraﬂ In this
work, we focus on how ConDec enables requirements
engineers and developers to share and exploit decision
knowledge regarding requirements.

2 ConDec Usage Scenario

We describe a scenario to demonstrate how ConDec
improves knowledge sharing between requirements en-
gineers and developers. In our example, the require-
ments engineer creates the following requirement in
the form of a user story: As a user, I want to choose
a password so that I can securely log in to the system.

The requirements engineer captures decision
knowledge directly in the description of the require-
ment. Decision knowledge consists of elements of var-
ious types: the issue, i.e. decision problem, to be
solved @, options for the solution %, pro- ¥ and
con-arguments ﬁ, and the solution decision #. The
elements are linked and build up a knowledge graph.

In they capture the issue whether passwords

Thttps://github.com /cures-hub
Zhttps://marketplace.atlassian.com/apps/1219690/decision-
documentation-and-exploration

Type:) User Story Status:
Priority: ~ High Resolution: Unresolved
Description

As a user, | want to choose a password so that | can securely log in to the system.
® should we check the security of the password?
+ Do not check the security of the password!

@ The users might choose a very simple password that can be easily cracked by brute-force attacks,
such as their dog's name.

A Usea library to check the password strength!

& The users are assisted in choosing strong passwords that cannot be cracked.

Figure 1: Decision knowledge captured in the descrip-
tion of the user story in Jira.

L 25 5 user, | provide my
password 1o log in to the
system

FGRE-1

@ should we check the
security of the password?

Enable 1o persist
passwords

FGRE-2 (Task 1) Solved Issue

& How to encrypt the
password?
uUnsolved Issue

o]

A Use a library to check the
password strength!

¥ Do not check the security
of the password!

Decision o Alternative o

& The users might choose
a very simple password that
can be easily cracked by

brute-force attacks, such as

& The users are assisted in

B2 implement passward
choosing strong passwords P P

strength checking

that cannot be cracked
FGRE-3 (Task 2)

their dog's name.

Pro-Argument

Con-Argument

Figure 2: A requirement @, development tasks),
®), and decision knowledge visualized as a tree. The
unsolved issue @ is highlighted in red font.

should pass a security check and the decision to inte-
grate a library for it. They can manually mark text as
decision knowledge but are also supported by a text
classifier that automatically identifies decision knowl-
edge elements. ConDec visualizes the relationships
between knowledge elements as a knowledge graph or
tree with the requirement being the root .

The requirements engineer creates development
tasks that split the requirement: Fnable to per-
sist passwords (Figure 2-2)) and Implement password
strength checking (Figure 2-3)). They capture the is-
sue & How to encrypt the password? in a comment
of the first task. ConDec automatically appends this
issue to the knowledge tree (Figure 2-@)).

https://github.com/cures-hub
https://marketplace.atlassian.com/apps/1219690/decision-documentation-and-exploration
https://marketplace.atlassian.com/apps/1219690/decision-documentation-and-exploration

How many requirements contain unsolved decision problems (=issues)?

Requirements with all issues solved

unsolved issues

Figure 3: Pie chart to detect requirements with one
or more unsolved issues as part of a dashboard.

2019-11-29 Meeting

Knowledge Sharing: Relevant Requirements and Decisions

® As a user, | provide my password to log in to the system. (FGRE-1)
o @ Issue: How to encrypt the password?
® ® Decision: Encrypt the password with the SHA1 algorithm!
o @ Issue: Should we check the security of the password?
e ® Decision: Use a library to check the password strength! 0

Figure 4: Automatically filled meeting agenda: The
formerly open issue is now solved with a decision doc-
umented in a commit message .

The developers spot requirements with unsolved
decision problems from a pie chart as part of a dash-
board . This dashboard allows the devel-
opers to navigate to the requirements. The develop-
ers navigate to the respective user story and discuss
the solution of the unsolved issue . They
orally decide to encrypt passwords with the SHA1 al-
gorithm but do not document it.

The developers implement the tasks on branches.
For the first task , they create the branch
FGRE-2.pw.storage. 'They make commits on this
branch with the decision # Encrypt the password with
the SHA 1 algorithm being part of a commit message.
The text classifier automatically identifies the decision
in the commit message. Since the branch and the com-
mits are linked to the task, ConDec automatically re-
lates the decision to the issue. The issue is marked as
(re)solved and the red highlighting is removed. The
developers are allowed to merge the branch back to
the mainline as the decision knowledge documenta-
tion is complete in the sense that both the issue and
the decision are documented.

Using the ConDec views in Jira, the requirements
engineer can easily access the documented decision.
To further share and discuss their knowledge, the re-
quirements engineer creates a meeting agenda that
is automatically filled with requirements and decision

knowledge relevant for the current sprint (Figure 4J).

3 ConDec Features

ConDec supports requirements engineers and devel-
opers in sharing their decision knowledge through an
integrated knowledge visualization . Re-
quirements engineers are supported in creating meet-
ing agendas filled with relevant decision knowledge
and in documenting decision knowledge in meetings.
The ConDec tool support also covers a chat bot that

supports both the requirements engineers and the de-
velopers in exporting decision knowledge captured in
chat channels to the respective requirement. Besides,
the chat bot informs them about important decision
problems and decisions regarding requirements in an
information channel. The communication is also sup-
ported through automated release notes including rel-
evant decision knowledge for the particular release.

Requirements engineers and developers exploit the
integrated knowledge visualization during changes, to
estimate change impacts. Developers can access re-
lated decision knowledge and requirements in code.
Both can use various filters, e.g., requirements en-
gineers could view decisions for a requirement only,
without seeing the tasks and alternatives.

In order to exploit the documentation, it must be
of high quality. ConDec supports quality checking and
enforcement of the complete documentation of deci-
sion knowledge. On the one hand, developers can
check the quality using the dashboard . On
the other hand, the completeness of the documenta-
tion can be a quality gate in pull requests so that they
can only be accepted and the respective branch can
only be merged if the quality check is passed.

4 Conclusion and Future Work

ConDec supports requirements engineers and develop-
ers in sharing and exploiting decision knowledge in a
lightweight, non-intrusive way. We evaluate ConDec
in student projects and develop techniques to teach
decision knowledge management [3]. As part of our
future work, we develop methods to support decision
making and decision evaluation with user feedback.

Acknowledgements

This work was supported by the DFG (German Re-
search Foundation) under the Priority Programme
SPP1593: Design For Future — Managed Software
Evolution (CURES project). We thank all the stu-
dents who contribute to the ConDec tools.

References

[1] A.H.Dutoit, R. McCall, I. Mistrik, and B. Paech,
Rationale management in software engineering.
Springer, 2006.

[2] A. Kleebaum, J. O. Johanssen, B. Paech, and
B. Bruegge, “How do Practitioners Manage Deci-
sion Knowledge during Continuous Software En-
gineering?”, in 31st International Conference on
Software Engineering and Knowledge Engineer-
ing (SEKE’19), Lisbon, Portugal: KSI Research
Inc., 2019, pp. 735-740.

[3] A. Kleebaum, J. O. Johanssen, B. Paech, and B.
Bruegge, “Teaching rationale management in ag-
ile project courses”, in 16. Workshop Softw. Eng.
im Unterricht der Hochschulen (SEUH), Bremer-
haven, Germany, 2019, pp. 125-132.

	Introduction
	ConDec Usage Scenario
	ConDec Features
	Conclusion and Future Work

