
Approximating the Number of Execution Paths in Simulink Models

Jochen Quante

Robert Bosch GmbH, Corporate Research
Renningen, Germany

jochen.quante@de.bosch.com

Abstract

Simulink1 is in widespread use for developing con-
trol applications, for example in the automotive do-
main. Simulink models often are the main artifacts
that developers work on. The most common artifact
is a block diagram. Code is directly generated from
these models. Therefore, the models are also subject
to maintenance and thus to the well-known effects
of software ageing. In order to monitor and control
maintainability of such models, it is necessary to mea-
sure them [3]. One important maintainability metric
that has not been addressed for block diagrams so far
is the number of execution paths, as this determines
the number of test cases that are needed to execute
each possible path through the software at least once.
The number of control branches (cyclomatic complex-
ity) is not enough, as the number of paths can vary
vastly depending on their arrangement [2]. Therefore,
an approximation of the number of execution paths
for Simulink models is needed.

1 Block Diagrams

A block diagram is basically a directed hierarchical
graph with ports, where connections denote data flows
and nodes represent different operations on the data.
For example, an addition node with two incoming data
flows adds these two values and outputs their sum.
A block diagram may also contain subsystem blocks,
where each subsystem contains another block dia-
gram, which allows modeling larger hierarchical sys-
tems. Control flow can basically occur in two forms:
a) triggered subsystems, i. e., subsystems that are only
executed when (or while) a trigger condition is true,
and b) switches, which switch between multiple in-
coming data flows. Figure 1 shows an example for
triggered subsystems, and Figures 2 and 3 show the
use of switches.

2 NPATH Metric

The number of paths is potentially infinite as soon
as loops are involved. Therefore, Nejmeh [2] defined
the NPATH metric as an approximation of the num-
ber of acyclic execution paths. This means that each
loop is only counted once. Despite this simplification,
NPATH still tends to grow exponentially with func-

1https://www.mathworks.com/products/simulink.html

Figure 1: Switch-case with three triggered subsystems

tion size. Nejmeh’s metric is defined on the abstract
syntax tree (AST). It basically sums up the number
of paths of different branches (if-else, while, for) and
multiplies the number of paths for sequential state-
ments.

With respect to triggered subsystems, we can eas-
ily create an AST-like representation that contains the
basic control flow: A triggered subsystem becomes a
child of an if or switch-case node from the parent di-
agram. Normal (unconditional) subsystems are han-
dled like function calls. Nejmeh’s metric can then be
directly applied to these constructs. However, this is
not true for switches, which need a special handling.

3 Data Flow Switches

Data flow switches also affect control flow, as only the
data that comes in through the active inport needs to
be calculated. An execution path in a block diagram
with switches is thus characterized by the subset of the
model that is active in a given scenario, based on the
current switch settings. Each such subset corresponds
to one execution path.

Control dependencies between switches and to
other elements are not clear from the model and need
to be determined first. In the following, we present
an algorithm for calculating an approximation of the
number of paths that are induced by switches.

Definitions: Let (V,E) be the data flow graph
for a given block diagram, with vertices V and edges
E. Let S ⊆ V be the nodes of type Switch or Multi-
portSwitch. For v ∈ S, let vc be the switch condition
and v1, . . . , vn the different data inports of v (where
n is the number of data inports of v).

Backward slicing from inputs: For v ∈ S and
i ∈ {1, . . . , n}, let bvi be the backward slice on (V,E)



Figure 2: This flipflop has three paths, as the two
switches are nested.

for inport vi. Merge all slices for same condition and
input port: dvc,i :=

⋃
v∈S bvi with i ∈ {1, . . . , n}.

Control dependent subset: For each switch
condition vc, calculate the intersection and union of
all slices. As the nodes in the intersection are active
in all cases, they are not control dependent on vc. The
relevant nodes thus are: Rvc :=

⋃n
i=1 dvc,i \

⋂n
i=1 dvc,i.

Formal concept analysis: Create a binary rela-
tion B ⊆ V ×V that contains all pairs (vc, vd) with vc
a condition node and vd ∈ Rvc . Perform formal con-
cept analysis [1] on that formal context, which results
in a concept lattice that contains all subset relations.
In particular, it tells us which switches are control de-
pendent on which other switches, and which are not.

Concept lattice evaluation: The number of
switch-induced paths in the block diagram can be cal-
culated from the lattice. We start traversal of the lat-
tice from the bottom element ⊥ (i. e., no condition
nodes), which corresponds to the top level in terms of
control dependency, and then visit its superconcepts.
In case an object appears newly in the concept’s ex-
tent, we have a nested switch, which means that the
corresponding path counts have to be added. Other-
wise, we have independent switches, i. e., a sequence,
which means the path counts have to be multiplied.

cnt(x) =



inp(x) +
∑

p∈sup(x)

(cnt(p)− 1) if dext(x) 6= ∅

∏
p∈sup(x)

cnt(p)
if dext(x) = ∅
∧ sup(x) 6= ∅

1 otherwise

NPATH = cnt(⊥), with inp(x) the number of in-
ports of concept x’s corresponding switch, sup(x) the
set of superconcepts of concept x, and dext(x) the
delta extent of x (i. e., the set of objects for which x
is the smallest concept that contains them).

4 Examples

Figures 2 and 3 show two examples for diagrams with
switches. In Figure 2, the two switches are nested in
a way that one data input to the switch comes from
the other switch. Therefore, we have nested switches
and thus only three paths. In Figure 3, we have an

Figure 3: Example with three switches and four paths.

example of two switches that use the same condition.
They are thus counted as two paths. The third switch
is not control dependent on the other two switches.
Therefore, we have the sequential case, which means
multiplication of these two paths with the other two
paths, which results in four paths.

5 Overall Path Metric

In order to get the overall NPATH metric for a given
Simulink model, we construct the corresponding AST
for the control-relevant aspects (triggered subsystems)
and annotate the switch-induced local path count to
the diagram nodes. Then, we apply Nejmeh’s ap-
proach to aggregate the path counts according to the
kind of construct. This results in an approximation
of the number of non-cyclic execution paths through
the model.

6 Conclusion

We have introduced a method for approximating the
execution path count in block diagrams. The method
can be used for complexity and testability assess-
ment. It adds another potentially relevant dimension
to block diagram metrics that has not been covered
in the literature so far.

References

[1] B. Ganter and R. Wille. Formal Concept Analysis –
Mathematical Foundations. Springer, 1999.

[2] B. A. Nejmeh. NPATH: A measure of execution path
complexity and its applications. Comm. of the ACM,
31(2):188–200, 1988.

[3] M. Olszewska, Y. Dajsuren, H. Altinger, A. Sere-
brenik, M. Waldén, and M. G. J. van den Brand. Tai-
loring complexity metrics for Simulink models. Proc.
of 10th European Conf. on Software Architecture –
Workshops, pages 5:1–5:7, 2016.


