Optimization of Automotive Software Distribution on Multi-core
Systems using Machine Learning Approaches

Syed Aoun Raza, Amal Jose Vallavanthara, Robert Bosch GmbH, Rakesh Nidavani, Robert Bosch Engineering
& Business Solutions;

1 Abstract

Multi-core software should be partitioned under differ-
ent constraints e.g., balanced execution load on cores,
timing behavior and optimized level of communica-
tion/synchronization among different system compo-
nents. The objective is to efficiently distribute the
processes onto multi-core hardware such that the sys-
tem has reduced communication/synchronization com-
plexity. Moreover, a bad distribution strategy during
migration from single- to multi-core and from multi-
to many-core hardware does not always return the
expected performance gain. This paper presents two
novel Al-based approaches for optimal distribution
(minimal inter-core communication inspite of no dead-
line misses) of software system on multi-core hardware
architecture. We discuss the comparisons of our ma-
chine learning solutions based on unsupervised and
reinforcement learning. We share the benefits and
limitations of using unsupervised learning and rein-
forcement learning based on our experience.

2 Introduction

Moore’s law is the observation that the density of
transistors in an integrated circuit would double ev-
ery year. However, over the last two decades, chips
have reached the epitome of the density of transistors
and growth rate is slowing down. Therefore, engineers
moved to multi-core processors and microcontrollers
to keep up with the pace of industry requirements.
However, multi-core systems would turn out to be a
disaster if the software is not distributed efficiently
among the processors. To achieve maximum gain on
multi-core hardware work-load distribution strategy
plays a significant role. This provides a guideline on
how to fullfill system constraints and keep the factors
to a minimum which generate overhead and reduce
the overall system gain e.g., keeping the processes on
same core which have maximum communication in the
system. Considering, the complexity of hardware and
software machine learning methodologies can support
multi-core system architects to devise an optimal dis-
tribution strategy.

3 State of the art

Migration of multi-core automotive embedded system
is challenging [1]. Through AUTOSAR application-
level architecture distribution, Engineers at VALEO
[2], have achieved 47% optimization w.r.t inter-core

communication. Machine learning algorithms have
been used previously for multi-core optimization in
different fields to optimize constraints like power con-
sumption [3], parallelism [4], etc. However, schol-
arly articles on using machine learning for automo-
tive software process level distribution to reduce inter-
core communication on automotive ECUs are not yet
openly available or have not been studied.

4 Data Preparation

Usually, an automotive software contains several mil-
lion lines of code and artifacts and distributing them
optimally is beyond naive human capability. There-
fore, we use a model based approach to convert system

information from different artifacts into an AMALTHEA

model. Our decision to use AMALTHEA model is
based on [5], which describes how AMALTHEA model
addresses some of the deficits of AUTOSAR especially
in multi-core systems. We analyze the task, interrupt,
runnable and data interactions to record communica-
tions frequency among them. This data is analyzed to
create a communication model of the system. Initial
process to core mapping was based on the communi-
cation model and computed process loads.

5 Why unsupervised learning?

Machine Learning is classified into supervised learn-
ing, unsupervised learning and reinforcement learn-
ing. Supervised learning is the training technique
where input data is labeled. Unsupervised learning
is a technique where data is not labeled and the sys-
tem tries to self learn from the data and its patterns.
In reinforcement learning, the system is placed in an
environment wherein it produces its own input data
and then trains itself using the generated output. It
is difficult to use supervised learning for automotive
software distribution because of the following reasons.
Firstly, the data model is huge and disparate. Sec-
ondly, labeling the automotive software data is a com-
plex task and finally, limited availability of optimally
distributed architecture makes it difficult to train a
sustainable model. Therefore unsupervised learning
is a convenient approach when only few parameters
need to be considered. Initially, the task in hand was
to cluster the processes and map the resultant clusters
to cores based on CPU resource utilization and inter-
process communication alone. We used a modified
K-Means algorithm [6] to cluster the highly commu-
nicating processes together. The algorithm provides



an elegant solution to cluster sparsely connected pro-
cesses. The algorithm could easily identify and cluster
processes which highly communicate with each other.
For instance, it will cluster processes into autonomous
driving processes, engine control processes, car multi-
media processes, etc, since the tasks in a component
have more probability of communicating with each
other. The software architect could also find the in-
terfaces between these functionalities.

6 Why Reinforcement learning?

Distributing a dense software architecture performing
a single functionality across a multi-core microcon-
troller requires a different approach. In automotive
software, the highly dependent engine control pro-
cesses (e.g. the periodic-control-tasks) communicate
frequently with each other. The K-Means clustering
algorithm grouped all these high-load processes and
assigned them to one core and a few low-load pro-
cesses on other cores, thus not achieving optimal load
balancing. The algorithm is better suitable for reduc-
ing the inter-core dependency in sparsely connected
processes. Dissecting a densely connected cluster of
processes into smaller clusters would be more optimal
if we consider more parameters like processes’ timing
behavior, core affinity, etc. The quality of the pre-
dicted model deteriorates with increase in number of
considered parameters. Unsupervised learning comes
with drawbacks like inflexibility and requires more de-
velopment effort. For instance, addition of new con-
straints like core affinity, memory usage or priorities
would require re-work of the algorithm as a whole
that leads to high development effort and slow deliv-
ery to market. Moreover, the lack of traceability and
explainable Al in the K-Means unsupervised learn-
ing makes it difficult to point out the exact reasoning
for the decisions made. We required more flexibility,
traceability and shorter delivery time. Reinforcement
learning was the next approach we successfully tried
to partition densely connected processes by incorpo-
rating more constraints. As shown in figure.l, our
reinforcement-learning algorithm consists of an inter-
preter, agent and an environment.

Analysis Environment
A
v
Interpreter Actions
| State
Agent

Rewards/Penalties

Figure 1: Reinforcement learning Work-Flow

The interpreter evaluates the environment and awards

rewards and penalties for actions. The software agent
uses these rewards and penalties to distribute the ar-
chitecture. As a large number of machine-states need
to be evaluated, the training takes an ample amount
of time. This was a major drawback. The trick to
overcome this is to extract only essential information
from the AMALTHEA model to replicate the original
multi-core environment.

7 Summary

In this paper, we discussed the distribution of multi-
core software architecture using machine learning ap-
proaches. We revealed our recipe for data preparation
to consolidate the large quantity of data to minimal
amount for efficient data processing. We gave an in-
sight into the benefits and consequences of using un-
supervised learning and reinforcement learning. We
reveal how we were able to build a solution that pro-
vides the user the power to distribute the tasks among
the cores by taking into consideration the following
parameters:1. Load of each core, 2. Load of each pro-
cess, 3. Communication of each task, 4. Amount of
label and runnable accesses, 5. Execution time of the
task such that the task deadlines are not missed, 6.
Constraints set by the users.

In future, we plan to incorporate deadlock and con-
sistency checks in reinforcement learning to make de-
cisions on assignment of processes to cores. The test
results showed up to 300% optimization in intra core
communication by using this method.

References

[1] Leteinturier, P., Brewerton, S., and Scheibert, K.,
”"MultiCore Benefits & Challenges for Automotive
Applications”

[2] Wenhao Wang, Sylvain Cotard, Fabrice Gravez,
Yael Chambrin, Benoit Miramond. Optimizing
Application Distribution on Multi-Core Systems
within AUTOSAR.

[3] Z. Chen and D. Marculescu, ”Distributed rein-
forcement learning for power limited many-core
system performance optimization,” 2015 Design

[4] Zheng Wang and Michael F.P. O’Boyle. 2010. Par-
titioning streaming parallelism for multi-cores: a
machine learning based approach.

[5] Andreas Sailer, Stefan Schmidhuber, Maximilian
Hempe, Michael Deubzer and Jurgen Mottok, A
Practical Comparison of ASAM MDX vs. AU-
TOSAR vs. AMALTHEA

[6] S. Geetha, G. Poonthalir, T. Vanathi, ”"Improved
K-Means Algorithm for Capacitated Clustering
Problem”



