
Challenges in Model-Driven Development of
Multi-Platform Augmented Reality Applications

Ivan Jovanovikj, Enes Yigitbas, Stefan Sauer, Gregor Engels
Paderborn University

Fürstenallee 11, 33102 Paderborn, Germany
{ivan.jovanovikj|enes.yigitbas|sauer|engels}@upb.de

Abstract
Augmented Reality (AR) is a technology that expands
our physical world by adding layers of digital infor-
mation onto it. Even though AR has been present
for some time, its solutions have been widely used in
high-end applications which are sometimes costly and
usually not suitable for large scale deployments. To-
day, we have a lot of low budget mobile devices (smart-
phones and tablets) with high processing capacities to
run AR applications, so it is important that we rethink
how we develop AR applications for the newly intro-
duced devices on the market. To address this prob-
lem, in this paper, we propose a model-driven devel-
opment framework for multi-platform augmented re-
ality applications.

1 Introduction
Augmented Reality (AR) is a user interface metaphor,
which allows for interweaving digital data with physi-
cal spaces. According to [1], AR relies on the concept
of overlaying digital data onto the physical world,
typically in real-time in form of graphical augmen-
tations. The recent technological advances and the
rapid spreading and increased usage of Augmented
Reality (AR) techniques in different domains (e.g.,
education, communications, medicine, entertainment
etc.), rise the need of covering different platforms
AR applications run on. However, due to the high
number of different AR platforms (e.g., Android,
iOS, HoloLens1 etc.), different development frame-
work (e.g., ARCore2, ARKit3, Vuforia4 etc.) different
AR-compatible devices (hand-held or head-mounted)
makes the development of AR applications for differ-
ent platforms a quite challenging task. Furthermore,
the growing functional complexity of nowadays AR
application regarding the complex structure (tasks,
scenes) and composition (interrelations between real
and virtual information objects) of AR applications,
makes the development task even more challenging.
Therefore, in this paper, we discuss the main chal-
lenges in developing multi-platform AR applications
and propose a solution in terms of a model-driven de-

1 microsoft.com/hololens 2 developers.google.com/ar
3 developer.apple.com/arkit 4 developer.vuforia.com

velopment framework for multi-platform augmented
reality applications.

2 Challenges
Currently, there is not enough support by most AR de-
vice manufacturers for multi-platform interoperability
between different AR enabled devices. Most of them
only consider their own features and therefore provide
support for libraries which can only be used to pro-
duce AR applications that run only on their products.
Hence, we identified the following main challenges for
development of multi-platform AR applications:

(C1) Selection and Implementation of Com-
mon AR Features. To develop a multi-platform AR
application, it involves the use of different libraries as
every AR device manufacturer has their own unique
sets of libraries that propels their products. Fusing
different predefined AR libraries into a single package
solution presents a great challenge. This comes from
the fact that most often these libraries are solely op-
timized for their targeted products with little or no
support for other AR devices that could also perform
similar functions as they do.

(C2) Hardware Components Initialization.
Within a single session for different types of AR de-
vices there is a specific hardware component initial-
ization. Therefore, the framework needs to intuitively
analyze its environment and initialize the appropriate
hardware components which are necessary for the ex-
ecution. However, components like the camera and
button controls are completely different on handheld
mobile devices and that of wearable devices like the
HoloLens. There is always a problem if a wrong
initialization takes place, it could result in a blank
screen, frozen or a malfunctioned application on the
respective AR device.

(C3) Code Generation. In general, writing dif-
ferent code to produce the same functionality for mul-
tiple AR enabled devices is not a pleasant experience.
Most devices have varying architecture thus making
the coded functionality incapable of running on multi-
ple AR devices without some structural changes. Fur-
thermore, the different platforms like Android, iOS,
and Microsoft HoloLens, makes this even more chal-
lenging. So, creating multiple versions of an AR ap-

microsoft.com/hololens
developers.google.com/ar
developer.apple.com/arkit
developer.vuforia.com

plication for multiple AR devices and platforms often
leads to bad maintainability, sustainability, security
etc. The developers, instead of focusing on their core
strength, i.e., the functional requirements of their cus-
tomers, they spend enormous amount of time making
different versions for different AR enabled devices.

(C4) Task Execution. AR applications that are
meant to support certain process as part of a train-
ing or maintenance scenarios, have to address all the
tasks that are comprising that process. This means
that these tasks have to be part of the application’
s logic and at a given point of time, to be executed.
However, doing this directly in the code, and not sep-
arating properly from the other aspects like data and
scenes and other AR elements, could lead to a process
difficult to manage. Furthermore, managing different
data and managing different scenes that are somehow
related logically could be quite complex if not man-
aged from a central place.

3 Solution Idea
To address the previously introduced challenges, we
propose a multi-platform development framework for
augmented reality applications that relies on model-
driven software development principles [2]. Based
on our previous experience in the domain of model-
driven development of AR applications [3], we pro-
pose the solution architecture shown in Figure 1. On
the top, a model of an AR application is shown which
is an instance of the Unified AR Modeling Language
(UARML), a language we are still working on. As
this language should cover different aspects of an AR
application like processes, data, and scenes, it unifies
three different languages namely, BPMN5 (Business
Process Modelling and Notation) for process, UCD
(UML6 class diagram) for data and IFML-AR (AR
extension of the IFML7 (Interaction Flow Modelling
Language) for scenes. Hence, an UARML model con-
sists of the following three models: Process Model
specified in BPMN, a Data Model specified in UCD,
and a Scene Model specified in IFML-AR. The cen-
tral component, namely the Multi-Platform Frame-
work, consists of the following components: Common
AR Capabilities, Hardware Initializer, and Code Gen-
erator. In order to establish a set of common AR fea-
tures, i.e., to address challenge C1, ARCore, ARKit,
and Vuforia, are going to be analyzed in terms of
their tracking capabilities (e.g., marker based track-
ing, model-based tracking, natural feature tracking
etc.), their recognition capabilities (e.g., image or ob-
ject recognition), etc. The collected features are go-
ing to be implemented as basic features of the frame-
work as part of the Common AR Capabilities compo-
nent. The Hardware Initializer component contains
packages that are meant to serve as a codebase that

5 bpmn.org 6 uml.org 7 ifml.org

Android	AR	App iOS	AR	App HoloLens	AR	App

Unified	AR	Modeling	Language	(UARML)

Process	Model
(BPMN)

Data	Model
(UCD)

Scene	Model
(IFML-AR)

Multi-platform Framework

Code	Generator

ProcessModel
toCode

DataModel
toCode

SceneModel
toCode

Common	AR	
Capabili>es

Hardware
Ini>alizer

Figure 1: Solution Architecture for Multi-platform
AR Application Development.

should reduce the work of developers regarding the ini-
tialization of the diverse hardware components on dif-
ferent devices (challenge C2). Technically, the Hard-
ware Initializer consists of common Unity3D8 com-
ponents which provide support for camera initializa-
tion, options for text and button selection on differ-
ent platforms, and also platform-specific code initial-
ization which has been abstracted into a single con-
tainer. The Code Generator, i.e., the corresponding
sub-generators, take the input models to generate the
final code for the three different platforms Android,
iOS, and HoloLens, thus addressing challenge C3. The
generated code contains process as well and therefore
a task execution support is necessary, as defined in
challenge C4. As most of existing workflow engine are
quite powerful and require a lot of processing power,
we build our own workflow engine which is capable of
executing sequential activities as well as basic gate-
ways like parallel or exclusive gateways.

References
[1] R. Azuma. A survey of augmented reality. Pres-

ence, 6(4):355–385, 1997.

[2] T. Stahl, M. Voelter, and K. Czarnecki. Model-
Driven Software Development: Technology, Engi-
neering, Management. John Wiley & Sons, Inc.,
Hoboken, NJ, USA, 2006.

[3] E. Yigitbas, I. Jovanovikj, S. Sauer, and G. En-
gels. A model-based framework for context-aware
augmented reality applications. In Handling Secu-
rity, Usability, User Experience and Reliability in
User-Centered Development Processes (IFIP WG
13.2 & WG 13.5 International Workshop @ IN-
TERACT2019), 2019.

8 unity.com

bpmn.org
uml.org
ifml.org
unity.com

	Introduction
	Challenges
	Solution Idea

