
Introducing a Framework for Managing Technical Debt

Developed by Practitioners

Marion Wiese
Universität Hamburg

wiese@informatik.uni-hamburg.de

Abstract

Technical Debt (TD) and the subsequent problems are
equally discussed in industry and scientific papers. In
this paper we introduce a framework developed by an
IT-unit in industry that tried to tackle these prob-
lems. The solution consists of methods to manage
and repay technical debt. The goal of the framework
is to provide a better overview of the TD items for
the mangers of the IT-unit. Additionally, the frame-
work is able to differentiate between general technical
issues and TD as initially described in [1].

1 Introduction

Technical Debts (TD) describe problems that arise
during the further development when workarounds are
made due to tight project deadlines or technical im-
provements are neglected over a longer time. In a
technical metaphor to financial debt the workaround
is interpreted as the debt and the resulting problems
as interest rates. In practice the term is often used for
all technical issues even if they don’t fit the metaphor.

This paper discusses the approach of an IT-unit
where the TD accumulation led to increasing cycle
times, more defective systems and discontent of the
developers. The enterprise resides in the publishing
and advertisement market where the system land-
scape must be highly flexible to adapt to new mar-
keting ideas. This led to constantly changing systems
and tight deadlines to keep up with the market.

The IT-unit is staffed with about 35 people and
is composed of three sub units: Business Analysis,
Development and Operations.

The Business Analysts (BAs) and even most of the
developers were always looking for the quickest solu-
tion in anticipatory obedience to an expected time-
line. Most of the time the managers of this unit were
not included in or informed of the decisions to take
on TD. Furthermore, the need to refactor the systems
and to repay TD was discounted by the management
and the BAs which led to systems that accumulated
a large amount of TD.

The IT-unit was confronted with the following
(research) questions (RQ):

RQ 1: How can the TD be repaid enough to reduce

the mentioned problems of increasing cycle times, de-
fective systems and discontent of the developers?

RQ 2: How can the more time-consuming techni-
cal tasks be included in the TD repayment?

RQ 3: How can an overall view of TD and general
technical issues be generated to better manage them
and to keep the management informed?

2 Methodology

The framework was developed in a small group of
two managers and two solution architects of the IT-
unit to tackle the given problems. The development
spanned five steps: (I) identification of the causes,
(II) identification of management and prevention so-
lutions, (III) assignment of solutions to causes, (IV )
development and documentation of the overall frame-
work, (V ) establishment of the new processes. The
establishment spanned four more steps: (a) introduc-
tion to the unit and (b) to the sub units by the man-
agers and (c) introduction to the Scrum teams and (d)
support and guidance by the architects. The frame-
work was developed and established two years ago and
was under constant refinement by the IT-unit.

3 TD Management Framework

3.1 Identified TD Causes and other Tech-
nical Issues

Ten issues were identified that led to the TD in this
unit of which not all strictly stick to the metaphor: (1)
regularly refactoring of code that may be in a bad con-
dition due to causes that are not specified in detail, (2)
workarounds which are made under the pressure of a
deadline, (3) implementation that stay incomplete be-
cause of changing business decisions, (4) missing docu-
mentation or tests mostly due to No. (2), (5) changing
of the architecture to fit modern approaches, (6) im-
plementation and refinement of technical monitoring
tools, (7) performance optimization, (8) adapting new
infrastructure like e.g. version upgrades, (9) proof of
concepts (POC) for new tools, (10) bug fixing.

3.2 Identified Solutions

Four solution items for handling these issues were
identified and assigned to the respective issues



(Table 1). In this framework all other items are called
functional requirement tickets (FRT) as they comprise
functional requirements. It was decided that the per-
son responsible for an item should be the one that
has the most interest in the completion of the item
(Table 2). Different groups are in charge of filing the
tickets (Table 2) in the ticket system (RQ3).

Cause/Issue Scope Solution
(1) Refactoring small MT

big TP
(2) Workaround TDT
(3) Incomplete implem. TDT
(4) Documentation/Test TDT
(5) Architecture Change small MT

big TP
(6) Monitoring MT
(7) Performance not visible MT

visible FRT
(8) Infrastructure TP
(9) POC small MT

big TP
(10) Bugs not visible/ MT

workaround
visible FRT

Table 1: Issues and their assigned solution item

Maintenance Tickets Maintenance tickets (MT)
are technically driven tickets that don’t have an im-
pact on the user. The goal of the MT is to repay
TD continually. Every MT has to contain a one-
sentence information that describes the impact of the
ticket. This has to be described in a way that is un-
derstandable for BAs and managers (RQ3). 10% of
the planned capacity of every sprint can be invested
for MTs according to the architects decision (RQ1).

Errors and performance problems can become di-
rectly visible to the user. The responsibility for these
tickets is assigned according to the visibility which
follows the proposed TD landscape discussed in [2].

Technical Debt Tickets A technical debt ticket
(TDT) describes a task that is necessary for clean cod-
ing and design or to follow the specified architecture
while implementing a functional requirement. This
task is not necessary for reaching the business goal of
the project and can therefore be implemented after a
reached deadline. This follows the original definition
of TD as proposed by [1]. The goal of the TDTs is to
get an overview of the accumulating technical debt of
a given project while it is still running and thereby to
give the managers an opportunity to intervene.

Technical Projects All tasks that require more
than five days development time are handled as a
technical project (TP). The goal of TP is to allocate
enough time to conduct bigger technical task (RQ2).
A TP is handled like a business project. Therefore,

a technical roadmap has to be constructed and pri-
oritized by the architects which will then be part of
the overall project roadmap defined by the managers
(RQ3).

Solution Responsible Filed By RQ
MT architect developers 1,3
TDT BA all 1,3
TP architect architect 2,3
FRT BA BAs

Table 2: Solution items and their respective
responsibilities

4 Conclusion, Study Limitations and
Future Work

The presented framework was developed, established
and used in practice for two years. It leads to a better
overview for the managers and provides an interpre-
tation of the differentiation between Non-TD and TD
as mentioned in [3].

There is no proof yet that the approach was suc-
cessful regarding the RQs. The evaluation to prove
the construct and internal validity in form of a struc-
tured questionnaire and a statistical evaluation of the
ticket backlog is still missing but will be part of the
future work of this author. To ensure the conclu-
sion validity the survey will also be conducted at a
comparable IT-unit that is not using this framework.
The evaluation may also lead to further potential for
optimization. To ascertain the external validity, the
framework needs to be adapted by other IT-units.

Finally, it needs to be said that the author may be
biased towards the framework as she was part of the
team that developed and established the framework as
an architect of the examined IT-unit and may not have
the necessary distance a researcher should possess.

5 Acknowledgments

I would like to thank Gruner+Jahr GmbH - Media
Sales Services for their contributions to the framework
and for their support of this paper.

6 References

[1] Ward Cunningham. “The WyCash portfolio manage-
ment system”. In: Proceedings of the Conference on
Object-Oriented Programming Systems, Languages,
and Applications, OOPSLA. Vol. Part F1296. 2. 1992,
pp. 29–30.

[2] Philippe Kruchten, Robert L. Nord, and Ipek Ozkaya.
“Technical debt: From metaphor to theory and prac-
tice”. In: IEEE Software 29.6 (Nov. 2012), pp. 18–
21.

[3] Zengyang Li, Paris Avgeriou, and Peng Liang. “A
systematic mapping study on technical debt and its
management”. In: Journal of Systems and Software
101 (Mar. 2015), pp. 193–220.


