
1

Variant Analysis in Changing System Landscapes
Vasil L. Tenev Martin Becker

Fraunhofer IESE, Kaiserslautern, Germany
{vasil.tenev, martin.becker}@iese.fraunhofer.de

Abstract—In order to raise understanding of similarity
in a set of related systems, the Variant Analysis approach
has been developed and applied in various industrial set-
tings over the last decade. The paper discusses typical
analysis goals and the respective approaches. Additionally,
it motivates the need for an incremental and iterative
analysis approach to support settings, where the scope of
the analysis changes over time. Examples to this end are
adding, updating, or removing variants, versions, or system
modules.

I. Introduction
Software-intensive systems are intended to change.
Changes to the systems may be the result of an or-
ganization evolving, of end-users discovering that the
software system does not fully meet their needs, several
customers demanding customized system variants or in-
deed as a result of those needs (requirements) themselves
are changing.

In order to raise understanding of similarity in a set of
related systems, the Variant Analysis approach has been
developed in [2] and has been successfully applied in
several industrial settings over the last decade. However,
if one applies the approach in larger and evolving product
lines the following challenges arise:
(i) Variant Analysis can be applied in various settings an-
swering different analysis questions. However, its unclear
where and how to apply the Variant Analysis.
(ii) If the product line and its system variants are evolving
and one likes to track the evolution of similarity over time,
the respective Variant Analysis has to be conducted again
and again, also just minor parts in the system variants
have been changed.
(iii) If there is a large number of variants that need
to be analysed the understandability of the respective
visualizations declines. One approach to overcome this
limitation is to conduct the Variant Analysis in several
iterations.
In order to cope with challenge (i), the paper discusses
different Variant Analysis settings, in which we have
applied the analysis so far, and experiences we have
made therein. In order to approach challenge (ii) & (iii),
we discuss the need and possibilities for an incremental
Variant Analysis in changing system landscapes, e. g. for
adding or removing variants, versions, or system modules.

The paper is structured as follows: the following
section briefly introduces the Variant Analysis approach
and its key visualisations. Afterwards, it discusses typi-
cal industrial analysis settings, their challenges and our
approach to overcome them. The paper closes with a
discussion of possibilities and limitations of incremental
Variant Analysis approaches and our planned next steps.

II. Variant Analysis
The Variant Analysis approach [2] and the corresponding
tool address the problem of analysing and visualizing
similarity of many (possibly large) variants of a software
system. This analysis problem is especially relevant when
several software system variants were created in the
process of cloning or forking, in order to accommo-
date increasing customization. While system cloning is
a frequent phenomenon in the software industry [1],
code duplication causes maintenance problems which,
after some time, create a need to merge these systems
and introduce a systematic reuse approach. Consequently,
Variant Analysis aims at recovering and visualizing the
similarity information using reverse engineering [3].

At the heart of the Variant Analysis, system variants
are represented as intersecting sets of content elements,
and the elements are placed similar between any n sys-
tems into the intersection of the respective n sets. Using
the resulting set model and the system structure hierarchy,
different similarity visualizations can be used to explore
the similarity measures from different perspectives. The
approach is scaling for tens of compared software systems
and millions lines of code. The current Variant Analysis
tool analyzes similarity of text files such as source code.
However, the underlying models and visualizations can
also be used for other types of data, even beyond the
software domain [5].

III. Variant Analysis Settings
Besides the original application scenario described above,
the provided technique of multi-comparison and similarity
visualization can be used also in other scenarios where
the similarity information is useful. So far we have used
Variant Analysis in the following analysis settings:
• Planning of incremental refactoring: An organization
wants to understand, where they should start the incre-
mental merging of variants into reusable core assets. To
this end, one searches for clusters with high similarity in
the phylogenetic tree and then analyses the variation in
the selected cluster in more detail.
• Grow and prune: An organization follows the “grow-
and-prune” approach to product line development [4],
where the phases of unconstrained code growth, possibly
resulting in cloned features, are interleaved with consol-
idation phases in which the new code is restructured to
a reusable form. In this case, four variants typically need
to be analysed: (i) the initial version of the core asset
CAi from which (ii) instance assets IAi have been derived
and which have been grown into (iii) the new version of
the instance assets IAi+1, and (iv) the latest version of



CAj. Variant Analysis was especially helpful, if several
branches had to be pruned in one merge step.
• Monitor feature evolution in managed clones: An or-
ganization developing cloned systems has decided not to
merge them, but nevertheless still monitor the distribution
of similarity in order to manage the evolution of cloned
code and, for example, ensure that bug fixes are ported
across the relevant variants.
• Locate feature impact: An organisation compares vari-
ants, which have a high degree of commonality but mainly
differ in one variable feature, in order to locate the feature
implementations in the variants.
• Understand platform variability: An organisation de-
rives system variants from core assets, which support
variability, e. g. via C-preprocessor annotations, and wants
to understand how complex is variability realizations
work. To this end, they derive specific variants from the
core assets and compare them against the core asset to
reason about the variability realization.

IV. The Need for Delta Variant Analysis
In larger system landscapes, e. g. high number of variants,
high evolution rate, large system size, it’s good practice to
conduct the Variant Analysis in a iterative and incremental
manner, typically with a slightly changing scope. In
general, we consider system families in four dimensions:
time (versions), space (variants), decomposition (system
elements), and interplay (element relationships). Both
time and space dimensions differ in their purpose and
origin of existence, however there is no need to differ-
entiate the analyses approach for them. The changes in
the other two dimensions lead to new versions/variants.
So, the changes in structure and relationships of system
elements impact the overall variance.

This leads to the question, which items need to be
(re-)analyzed and which results from previous analyses
could be reused. Next, we discuss the necessary steps for
incremental Variant Analysis in typical change settings.

• Addition of variant/version. Map the new variant items
to existing information items, where possible. In other
case, create new information items. Finally, analyse the
variance and update figures for the considered items.
• Removal of variant/version. Update figures for infor-
mation items that are included in the removed item.
• Addition of system element. Add new system elements
and map them to new information items. Analyse variance
and update figure accordingly.
• Removal of system element. Remove corresponding
information items and update figures along the hierarchy.
• Update of variant/version/system element. Identify the
information items that have changed and update their
figures accordingly.
• Addition/Removal/Update of relationships. Any change
of relationships is reflected either by influencing the
mapping to information items, or by causing addi-

tion/removal/change of system elements, i. e. analyse and
handle as a combination of these actions.

V. Conclusion
The complexities of software evolution can be signifi-
cantly reduced by viewing evolving software as a software
product line and using Variant Analysis to understand the
similarity among the system variants.

In this paper, we have outlined different Variant Anal-
ysis settings in order to raise understanding where and
how to apply the approach. The presented settings go
beyond the original analysis setting, i. e. a commonality
and variability analysis of clones variants. According to
our experiences in large and changing systems settings,
there is a need for an incremental and iterative analysis
approach. To this end, we have discussed different change
settings and the necessary steps to conduct Variant Anal-
ysis in a more delta-oriented fashion.

Our next steps include a deeper analysis of the change
scenarios and a respective enhancement of the Variant
Analysis approach and tool.

References
[1] Y. Dubinsky, Berger, S. Duszynski, K. Czarnecki. An

exploratory study of cloning in industrial software
product lines. In A. Cleve, F. Ricca, and M. Cerioli,
editors, 17th European Conference on Software Main-
tenance and Reengineering, CSMR 2013, Genova,
Italy, March 5-8, 2013, pages 25–34. IEEE Computer
Society, 2013.

[2] S. Duszynski, J. Knodel, and M. Becker. Analyzing
the source code of multiple software variants for reuse
potential. In M. Pinzger, D. Poshyvanyk, and J. Buck-
ley, editors, 18th Working Conference on Reverse
Engineering, WCRE 2011, Limerick, Ireland, October
17-20, 2011, pages 303–307. IEEE Computer Society,
2011.

[3] M. Lindvall, M. Becker, V. L. Tenev, S. Duszynski,
and M. Hinchey. Good change and bad change: An
analysis perspective on software evolution. Trans.
Found. Mastering Chang., 1:90–112, 2016.

[4] Th. Mende, F. Beckwermert, R. Koschke, and
G. Meier. Supporting the grow-and-prune model
in software product lines evolution using clone de-
tection. In 12th European Conference on Software
Maintenance and Reengineering, CSMR 2008, April
1-4, 2008, Athens, Greece, pages 163–172. IEEE
Computer Society, 2008.

[5] V. L. Tenev, S. Duszynski, and M. Becker. Variant
analysis: Set-based similarity visualization for cloned
software systems. In M. H. ter Beek, W. Cazzola,
O. Dı́az, M. La Rosa, R. E. Lopez-Herrejon, Th.
Thüm, J. Troya, A. R. Cortés, and D. Benavides,
editors, Proceedings of the 21st International Systems
and Software Product Line Conference, SPLC 2017,
Volume B, Sevilla, Spain, September 25-29, 2017,
pages 22–27. ACM, 2017.


