
Combating Run-time Performance Bugs with Performance Claim

Annotations

Zachery Casey, Michael D. Shah
{casey.z, mikeshah}@northeastern.edu
Northeastern University, Boston, MA

Abstract

Bugs in software are classified by a failure to meet
some aspect of a specification. A piece of code which
does not match the performance given by a specifi-
cation contains a performance bug. We believe there
is a need for better in-source language support and
tools to assist a developer in mitigating and docu-
menting performance bugs during the software devel-
opment life cycle.

In this paper, we present our performance claim an-
notation framework for specifying and monitoring the
performance of a program. A performance claim an-
notation (PCA) is written by a programmer to assert
a section of code’s run-time execution coincides with
a specific metric (e.g. time elapsed) and they want to
perform some action, typically logging, if the code fails
to match the metric during execution. Our implemen-
tation uses a combination of the DWARF debugging
format [4] and the Pin dynamic binary instrumenta-
tion tool [2] to provide an interface for building, using,
and checking performance claims in order to reduce
performance bugs during the development life cycle.

1 Introduction

When writing software, there are often minimum re-
quirements for its performance. For example, a game
must consistently render 30 frames per second or a
server needs to reliably handle some number of re-
quests per second. If an application fails to meet the
respective benchmarks, a programmer may rely on a
profiler such as perf or VTune to identify hotspots
in the code [6, 7]. The programmer can then tune
code until the application runs fast enough to meet
the given specification. This ad-hoc style of perfor-
mance tuning is often not documented, and the mea-
surements may have to be performed again by multi-
ple developers during a project’s life cycle.

To combat certain classes of program logic bugs,
programmers will often rely on assertions to ensure
parts of their program function a certain way. Like-
wise, we want to be able to assert whether certain
parts of the program perform a certain way. If the
code fails to keep these assertions about performance,
we want all available information about it to be logged
for future review. In previous work on this concept,

1 // Copy integers from pointer -array

2 // into cleared vector.

3 void copy_into(int* ys, unsigned ys_len ,

4 std::vector <int >& xs) {

5 assert(ys != nullptr);

6 // Because of .reserve (),

7 // malloc should be called at most once.

8 PCA(MaxAlloc , PCA_INT 1);

9
10 xs.clear ();

11 xs.reserve(ys_len);

12
13 for (unsigned i = 0; i < ys_len; ++i)

14 xs.push_back(ys[i]);

15 }

Listing 1: A performance claim annotation about un-
necessary allocation.

performance assertions are often defined external to
the source program [1, 5]. Rather than externally
applying constraints at some point in the future, we
envision a workflow where performance claims are in-
tegrated into the design of functions in a fashion sim-
ilar to regular assertions about program logic: the
programmer will determine the contract of a function
and then write the appropriate documentation, type
signature, assertions, and annotations. Listing 1 pro-
vides an example of the result of this process. The
PCA on line 8 of Listing 1 serves a similar purpose to
the assertion: it assists the programmer in debugging
if they forget to add a call to reserve and provides
another refinement to the function’s documentation.

In this paper we present our implementation for
performance claim annotations (PCAs), a tool for
software developers to precisely define the perfor-
mance characteristics of the software they write in
C/C++.

2 Implementation

In order to create performance claim annotations, we
established four criteria which should be met:

1. Declare claims in-source.

2. Easily write or extend complex claims about ex-
ecution.

3. Disable monitoring without need to recompile.

4. Be unaffected by changes in optimization level.

Criteria 2, 3, and 4 eliminate the possibility of im-
plementing PCAs as a library in C/C++. Most no-
tably, if the programmer needs to place one or more
calls to an external library into functions, there is the
possibility of affecting the process of function inlin-
ing; furthermore, it would be non-trivial to avoid re-
compilation to entirely disable monitoring. However,
without non-portable extensions to the compiler, it
seems difficult to inject the necessary data collection
and checking.

2.1 Overview

To implement PCAs, we rely on DWARF debugging
symbols which can be enabled when invoking any
mainstream C/C++ compiler. Regardless of opti-
mization level, debugging symbols record information
about both the source and the resulting binary. Al-
though they are typically used by debuggers, we are
able to store data about annotations in them. We
then rely on a dynamic binary instrumentation tool,
in our case Pin, to do the work of monitoring and
checking claims instead of injecting instrumentation
code earlier in the compilation pipeline.

By utilizing both of these tools, we achieve our four
implementation criteria. In-source declarations are
created using pre-processor macros in C/C++, and
the process is portable to any compiler with support
for identifier mangling and outputting DWARF sym-
bols (As an example we wrote a proof of concept for
Rust programming language). Since the implementa-
tion of claims is written using Pin, claims have full ac-
cess to instruction level instrumentation and the var-
ious other tooling Pin provides. And, finally, the only
effect on the binary is the addition of debugging sym-
bols: to disable monitoring, the executable is not run
through Pin and, likewise, optimization during com-
pilation remains entirely unaffected.

2.2 Working Example

Returning to the code in Listing 1, we can imagine a
version of the function which does not call reserve
on the vector. Depending on the size of the pointer-
array ys and the initial capacity of xs, we may see
any number of allocations. We expect to catch this
failure with our MaxAlloc PCA.

When compiled, the unhygienic PCA macro expands
into a mangled, unused identifier representing the type
of claim and the arguments passed to it. Currently,
the encoding we use supports integers, as seen on line
8 of Listing 1, along with strings and floating-point ar-
guments. In the resulting binary, the unused identifier
generated by the macro is stored as debugging infor-
mation, but has no effect on execution as the compiler
can safely remove it.

After compilation, the binary can be used as usual,
since the only change is the addition of debugging
symbols. However, before we are able to run the pro-
gram and check the PCAs, it must be passed to a

1 unsigned* MaxAlloc_start(const PCA* pca) {

2 unsigned* total_calls = new (0);

3 pca ->on_function("malloc",

4 [](unsigned* i) {

5 *i += 1;

6 },

7 total_calls);

8 return total_calls;

9 }

10
11 void MaxAlloc_end(const PCA* pca ,

12 unsigned* total_calls) {

13 unsigned max_calls = pca ->args ()[0];

14 if (!(* total_calls <= max_calls))

15 pca ->log_failure (* total_calls ,

16 max_calls);

17 pca ->clear_on_function("malloc");

18 delete total_calls;

19 }

20
21 void MaxAlloc_inject(const PCA* pca) {

22 pca ->at_start(MaxAlloc_start);

23 pca ->at_end(MaxAlloc_end);

24 }

25
26 PCA_CLAIM ({"MaxAlloc", MaxAlloc_inject });

Listing 2: A claim to check the number of calls to
malloc.

small external utility we have written which scans all
DWARF symbols looking for the encoded PCA iden-
tifiers. Once one is found, it is decoded and written
to a plain-text file along with relevant contextual in-
formation which will be needed in Pin in order to in-
strument the executable. Currently, the contextual
information only contains the start and end of the
scope surrounding the PCA, this is a detail we will
return to in Section 3.1.

Finally, in order to run the program and check
the annotations, the binary must be passed to Pin
at the command-line along with the PCA Pintool and
the plain-text file containing the relevant annotations.
The PCA Pintool is a shared object containing basic
startup code as well as the interface for claim defini-
tions. A new claim can be created by implementing
the interface and registering it under a name which
will be used by programmers to reference it. Listing
2 provides an example of using this interface; but, as
the implementation relies on details specific to Pin,
it is partially abridged with helper methods for the
purpose of exposition.

2.3 Checking Claims

When the program is run using Pin and a scope con-
taining a MaxAlloc PCA is executed for the first
time, the MaxAlloc inject function will be run.
The PCA object passed to it contains the details of
the annotation and provides access to Pin features.
Here, MaxAlloc inject uses Pin to add the hooks
MaxAlloc start and MaxAlloc end which will be run
whenever execution enters and exits the scope sur-
rounding the annotation, respectively. In our partic-

ular example, MaxAlloc start will be run at the be-
ginning of copy into and MaxAlloc end is run before
the final return instruction of copy into.

MaxAlloc start allocates an integer counter and
requests to be notified every time malloc is called
so the total calls can be incremented. As the func-
tion finishes, total calls is passed to MaxAlloc end.
Since we want the number of calls to malloc to be less
than the first argument in the annotation, we first re-
trieve this argument from our PCA object. We can then
check if we have called malloc more times than we ex-
pected. For copy into, if total calls is greater than
1, we want to log the failure and actual number of al-
locations done. Furthermore, we must cleanup both
the hook on malloc and the total calls pointer.

3 Discussion

Initial feedback we received to the notion of PCAs sug-
gested unit testing as an alternative and effective way
to capture performance characteristics. However, unit
tests may not capture a true execution of a program.
Real-time applications, such as databases or games,
will receive many varied inputs which cannot be fully
captured in unit testing. Furthermore, unit tests serve
as poor documentation when trying to localize where
performance matters in a real time system. PCAs pro-
vide a simple, well-defined method for programmers
to convey and verify the performance characteristics
of their code without a lot of testing work.

3.1 Limitations and Related Work

As hinted previously, a current limitation of our tool
is relying on the containing scope of a PCA to deter-
mine its beginning and end. Although in most cases
this is a reasonable assumption, the previous system
most closely resembling ours did not have this restric-
tion [3]. The performance assertions infrastructure
described by Lancevicius and Metz contains a num-
ber of features we believe are specific to the mobile
devices they were developing, such as assertions which
begin in one processes and end in an entirely different
process.

However, much of the general functionality can be
replicated or usurped with minor extensions to our
tool. Specifically, to support non-lexical PCAs, we
can extend our system to have similar PCA START and
PCA END calls; when we scan the binary’s DWARF
symbols, rather than output the start and end of the
surrounding scope, we are able to simply output the
specific location of those calls. Furthermore, because
we rely on Pin for dynamic binary instrumentation,
our tool has access to fine grain control of exactly
what we wish to monitor and can naturally inspect ev-
ery part of the run-time. This contrasts with relying
on a distinct process to monitor only the more general
aspects of system and only be queried as needed.

3.2 Conclusion and Future Work

In the future, we will continue adding support for
various extensions, such as non-lexical PCAs. As ex-
pected, implementing more advanced claims using Pin
can become troublesome, as its generality and power
becomes a hindrance; so, as we continue developing
claims, we hope to slowly build a small utility library
in order to have Listing 2 closely align with the reality
of building or extending claims.

Since our tool is active, it is meant to be used dur-
ing development, rather than reactive, being applied
once a problem is found, we hope to find places to
utilize it during real-world development. Unlike most
instrumentation, benchmarks are not particularly in-
teresting, since they match exactly to using Pin in-
strumentation to monitor various metrics outside of
our tool. By taking the workflow we have described,
we want to continue to explore how useful it is to pro-
grammers, specifically outside of embedded and mo-
bile devices where previous works show performance
assertions are effective.

References

[1] S. E. Perl and W. E. Weihl. “Performance Asser-
tion Checking”. In: Proceedings of the Fourteenth
ACM Symposium on Operating Systems Princi-
ples. SOSP ’93. Asheville, North Carolina, USA:
ACM, 1993, pp. 134–145.

[2] K. Hazelwood and A. Klauser. “A Dynamic Bi-
nary Instrumentation Engine for the ARM Ar-
chitecture”. In: Proceedings of the 2006 Inter-
national Conference on Compilers, Architecture
and Synthesis for Embedded Systems. CASES ’06.
Seoul, Korea: Association for Computing Ma-
chinery, 2006, pp. 261–270.

[3] R. Lencevicius and E. Metz. “Performance Asser-
tions for Mobile Devices”. In: Proceedings of the
2006 International Symposium on Software Test-
ing and Analysis. ISSTA ’06. Portland, Maine,
USA: ACM, 2006, pp. 225–232.

[4] DWARF Debugging Standard. DWARF Debug-
ging Information Format Committee. Feb. 2017.

[5] D. Rogora et al. “Analyzing System Performance
with Probabilistic Performance Annotations”. In:
Proceedings of the Fifteenth European Conference
on Computer Systems. EuroSys ’20. Heraklion,
Greece: Association for Computing Machinery,
2020.

[6] Intel vTune Amplifier. Online. https : / /

software.intel.com/en-us/vtune. Intel Soft-
ware.

[7] Perf wiki. Online. https://perf.wiki.kernel.
org/index.php/Main_Page.

https://software.intel.com/en-us/vtune
https://software.intel.com/en-us/vtune
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page

	Introduction
	Implementation
	Overview
	Working Example
	Checking Claims

	Discussion
	Limitations and Related Work
	Conclusion and Future Work

