
Heat-aware Load Balancing - Is it a Thing?

Lukas Iffländer, Norbert Schmitt, Andreas Knapp, Samuel Kounev
{firstname}.{lastname}@uni-wuerzburg.de

University of Würzburg

Abstract

Dynamic frequency scaling, also known by the name
of its most common implementation form Intel “Turbo
Boost,” has been around for over ten years. While it
provides a short time boost to a CPU’s clock rate, it
has no permanent influence on it. Existing work either
tried to characterize the boost’s behavior or explicitly
disabled the boost not to influence their performance
models. We present heat-aware load balancing. This
approach allows migrating a service between servers in
a matter that keeps the boosted state active as long
as possible. We introduce a prototype implementa-
tion that shows the feasibility of our approach in a
simulated environment.

1 Introduction

Modern processors can exceed their designed clock
rate for short time frames. Starting with Intel’s
Turbo Boost technology in 2008, these capabilities
have evolved, and competing CPU manufacturers
have adopted these technologies.

At first, the idea was to increase only the clock
rate of a single Central Processing Unit (CPU) core.
When first introducing Turbo Boost in 2008, multi-
core CPUs were expanding out of the enthusiast mar-
ket and became available to the general public. At
the same time, many applications—especially video
games—were single-threaded. To increase the perfor-
mance of these applications, all cores but one could
be disabled to allow for a permanent increase in the
remaining core’s clock rate.

In addition to continually boosting a single core
or few cores, Intel added the capability to exceed a
CPU’s thermal budget temporarily. This boost can
be between around 20% (for servers) and over 100%
(for ultra low power CPUs, e.g., Intel’s Y-Series).

Related work mostly deals with the characteris-
tics of Turbo Boost [2] and its influence on specific
computing scenarios, e.g., high-performance comput-
ing [4]. Many works dealing with software perfor-
mance regard this feature (similar to HyperThread-
ing) as an unwelcome interference to their perfor-
mance models and disable this feature. While this
is a sensible choice to validate performance models, it
limits their real-life applicability.

Instead of seeing Turbo Boost as a nuisance, in this
work, we work on harvesting its potential. Imagine

an infrastructure with several homogenous compute
nodes. On each of these nodes, an application is run-
ning, consuming around 60% of that nodes compute
resources. We assume each of these applications is al-
ready consolidated as much as possible. Now we want
to add a single application that would require 50% of
the resources of one of our hosts. Within the existing
possibilities, we would have to boot up another host
machine (or violate an SLA on purpose).

As we have learned above, Turbo Boost allows a
Server to have around a 20% higher clock rate than
usual. Thus, on a boosted server, we could deploy the
new application as long as the boost stays up. Unfor-
tunately, the boost does not stay up infinitely. Here
the idea of heat-aware load balancing enters the stage.
When a host drops out of boost (or is predicted to
drop out of boost), we migrate the application to the
host, expected to stay boosted for the longest pos-
sible time. We continue this process as long as the
applications require more resources than available.

We expect this approach to provide a constant
boost in large environments where there is always a
boostable server available. For smaller settings, this
approach could help to quickly deploy the applica-
tion and then later migrate it to a newly booted ad-
ditional host. The contributions of our work are (1)
an approach to heat-aware load balancing and (2) a
prototype implementation using software-defined net-
working, including an initial evaluation.

The remainder of this work first introduces Turbo-
Boost in Section 2, and our approach to utilize it for
increased performance in Section 3. Next, we imple-
ment it in Section 4 and perform the first evaluation
of its feasibility in Section 5. Last, Section 6 concludes
the paper and gives an outlook on future work.

2 Intel TurboBoost

Compared to classical overclocking, the CPU is still
working within thermal design specifications, the
amount of heat a chip is specified to emit, and the
cooling system can dissipate. Still, it can exceed for
a short period with a higher clock speed than usual.
The technology is independent of the Operating Sys-
tem (OS) and enabled by default. It can only be dis-
abled in BIOS and is only CPU-based, not core-based.
Between version 1.0 and version 2.0 of the boost tech-
nology, the principle of operation did not change a lot,



Fr
eq

ue
nc

y

C
or

e 
0

C
or

e 
1

C
or

e 
2

C
or

e 
3

C
or

e 
0

C
or

e 
1

C
or

e 
2

C
or

e 
3

C
or

e 
0

C
or

e 
1

All cores operate at the
rated frequency

All cores operate at a
higher frequency

Few cores may operate at
even higher frequencies

Figure 1: Visualization of turbo boost [1]

1

24

3

(a)

1

24

3

(b)

1

24

3

(c)

1

24

3

(d)

1

24

3

(e)

1

24

3

(f)

1

24

3

(g)

1

24

3

(h)

Figure 2: Overview of a full rotation using heat-aware load balancing.

but it was improved. Figure 1 shows how the boost
works.

3 Approach

Our approach follows the idea of having an applica-
tion, always running on a boosted server. Figure 2
shows an example behavior for a set of four servers.
We assume that either the application alone creates
enough load to trigger the server going into boost
mode or that the server already has a high enough
load that the new application can only fit when boost-
ing the CPU frequency.

We deploy a new application on the first host in
Figure 2a. This activity leads to the host’s CPU
switching to boost mode in Figure 2b. The boost
mode results in a higher creation of heat than the
cooling solution can transport away. Thus, after some
time, the thermal budget of the CPU is exhausted
(shown by the server turning red), and the CPU leaves

its boost mode in Figure 2c. We simultaneously move
the application to the next server to keep it on a ma-
chine at an elevated clock rate. Thus, this target
server now enters its boosted state (Figure 2d). Again,
at some point, the server exits its boosted state, and
we move the application to the next server (Figure 2e).
During the time the application spent on the second
server, the first server cools down a little (represented
by the server turning orange). The process repeats
with boosting (Figure 2f), moving the fourth and last
server, and the first and second server again cooling
down (Figure 2g), and also with boosting the last
server (Figure 2h). As shown by the heat icon in
the figures, the accumulated heat level on the hosts
diminishes after exiting boost state and relinquishing
the application to another host. At some point, the
first host again is capable of going into boost state
(represented by it turning green too). When the last
host leaves its boost state, we assume that the first



host is ready to boost again. Thus, the application
once more moves to the first host. From thereon, it
continues through the rotation.

For the implementation of the heat-aware load bal-
ancing, we propose to use Software-defined Network-
ing (SDN). SDN allows for the dynamic modification
of network packets. Here, we use SDN to change the
destination of requests to a service based on the ma-
chine’s temperature and ability to go into or stay in
boosted mode.

Therefore, we make a list of computing machines
known as workers. Our application runs on each of
these machines and listens to the active port. The
application does not require a significant amount of
resources when running without receiving queries.

4 Implementation

Our application has multiple components that inter-
act: 1. a central monitoring component, 2. distributed
worker-side monitoring components, 3. an SDN con-
troller, and 4. an SDN-enabled switch.

While the worker-side components must run on the
worker machines, the other parts can run on a single
device or spread over multiple machines.

Central Monitoring The central monitoring com-
ponent collects data from the worker machines.
For this task, our choice fell to InfluxDB, and
Chronograph visualizes the recorded data.

Worker-side Monitoring To collect information
regarding CPU frequency and temperature from
the worker machines, we use Telegraf.

SDN Controller We use Ryu as an SDN controller.
Ryu is lightweight, supports basic switching, a
REST interface, and provides for a simplified ex-
tension using simple Python scripts.

SDN Switch In general, any OpenFlow (OF) 1.3
compatible switch should suffice for our ap-
proach. To ensure full OF compliance, we use
Open vSwitch.

5 Evaluation

We put our system under load using the LU workload.
We deploy the LU workload in the version from SPEC
SERT [5] reimplemented in BUNGEE [3].

Figure 3 shows the CPU frequency development on
three servers with our load balancer enabled through-
out three different LU workloads, that extremely over-
book Figure 3a, slightly overbook Figure 3b, and do
not entirely exceed the system resources Figure 3c.

The regular maximum frequency for the used CPUs
is 3.5 GHz. The figure shows that the amount of time
spent at higher clock rates increases with decreasing
total system load up to a point in Scenario C, where
the active CPU is always in a boosted state. Thus,
overall our approach of keeping the active server at
maximum frequency is feasible.

0 100 200 300 400 500 600
Time[s]

1500

2000

2500

3000

3500

CP
U 

Fr
eq

ue
nc

y 
in

 M
Hz

Server A Server B Server C

(a) Scenario A

0 100 200 300 400 500 600 700 800
Time[s]

1500

2000

2500

3000

3500

CP
U 

Fr
eq

ue
nc

y 
in

 M
Hz

Server A Server B Server C

(b) Scenario B

0 100 200 300 400 500 600 700
Time[s]

1500

2000

2500

3000

3500

CP
U 

Fr
eq

ue
nc

y 
in

 M
Hz

Server A Server B Server C

(c) Scenario C

Figure 3: Highest core frequency during the experi-
ment.

6 Conclusion and Future Work

In this work, we introduced heat-aware load balanc-
ing. We described the underlying idea of short term
CPU frequency scaling and our approach to using it
for increased performance. We provide an implemen-
tation and the first evaluation of this prototype. The
results show that for a matching workload, our ap-
proach achieves its goals.

In future work, we will extend our evaluation to
performance metrics like throughput and latency and
perform temperature and power consumption mea-
surements.

References
[1] J. Casazza. First the Tick, Now the Tock: Intel Microar-

chitecture (Nehalem). Intel® Xeon® processor 3500 and
5500 series Intel® Microarchitecture. White Paper. Intel
Cooperation, 2009.

[2] J. Charles et al. Evaluation of the Intel® Core™ i7 Turbo
Boost feature. IEEE, 2009.

[3] N. R. Herbst et al. “BUNGEE: An Elasticity Benchmark
for Self-Adaptive IaaS Cloud Environments”. In: Pro-
ceedings of the 10th International Symposium on Soft-
ware Engineering for Adaptive and Self-Managing Sys-
tems (SEAMS 2015). Firenze, Italy: IEEE, 2015.

[4] B. Acun, P. Miller, and L. V. Kale. Variation Among Pro-
cessors Under Turbo Boost in HPC Systems. ACM, 2016.

[5] K.-D. Lange and M. G. Tricker. Server Efficiency Rating
Tool (SERT) Design Document 2.0.3. Tech. rep. Standard
Performance Evaluation Corporation (SPEC), 2019.


	Introduction
	Intel TurboBoost
	Approach
	Implementation
	Evaluation
	Conclusion and Future Work

