
A Journey to comprehensible User Behavior Models

Reiner Jung
reiner.jung@email.uni-kiel.de
Kiel University, Kiel, Germany

Lars Jürgensen
stu203350@mail.uni-kiel.de

Kiel University, Kiel, Germany

Abstract

Engineers use workload models to estimate the future
utilization of services, understand usage profiles of ser-
vices, and drive plans to evolve software systems. we
usually separate workloads in intensities and user be-
havior models in context of performance evaluations
and forecasting. Outside of software engineering user
behaviors are often collected in clickstreams. They
may represent the complete history of a user at one
site. Ideally, a number of clickstreams can be trans-
formed into a user behavior model containing multiple
typical behavior pattern usable for a workload model.

While the collection of user behaviors is fairly sim-
ple, the extraction of behavioral patterns is compli-
cated. Current approaches are tailored for specific
domains, are only applicable for one purpose, and
refuse to be understood and analyzed in a meaningful
way. In this paper, we introduce our latest advances
to identify a suitable identification approach and lay-
out further obstacles which must overcome to have
comprehensible user behavior models.

1 Introduction

In the second phase of the iObserve project [8], we re-
quired for our operator-in-the-loop approach compre-
hensible workload including behavior models, where
each behavior covers a typical real life user and its
variations. Such behaviors could then be added, re-
moved and modified to customize workloads. This
customizability is required, as not all changes in user
behavior can be derived from observation data, e.g.,
behavioral changes based on sales events, weather con-
ditions, and disasters. Furthermore, behavior mod-
els provide insight in the actual use of an service in
contrast to the anticipated use during development.
This can guide the software evolution and marketing
of a service. Thus, it is important to have behavior
models which correspond with real user behaviors and
not only provide a purely descriptive incomprehensi-
ble representation of past behavior.

We experimented with existing workload charac-
terization approaches. The WESSBAS approach [16]
seemed to be a perfect solution for our needs allow-
ing us to continue with our primary research goals re-
garding cloud-based applications. Unfortunately, the
clustered behaviors did not match the behaviors we
used to drive our case studies; and here our journey

for comprehensible behavior models begun.
In this paper, Sections 2 and 3 summarize workload

and behavior model concepts. Section 4 discusses our
latest effort to identify behavior clusters and Section 5
reports on its evaluation. Section 6 summarizes our
findings and identifies remaining challenges to com-
prehensible behavior models.

2 Workload Models

Early workload models were used to test service end-
points, like specific web pages, to estimate response
times and system capacity. However, performance de-
pends on functions, data and context. Thus, workload
models had to start to emulate real users and combine
these behaviors with intensities, i.e., the number of si-
multaneous users performing an operation.

Today, workload models are used during design
time to predict and at runtime to test and forecast
system qualities. Thus, workloads must be close to
real world scenarios. In Palladio [4], workloads and
behaviors are configured based on requirements engi-
neering knowledge and design properties.

Observation based models decompose workloads in
a seasonal, trend, burst and noise component to bet-
ter understand their structure and improve forecasts
regarding utilization and software performance [6, 7].

3 Behavior Model Concepts

Beside intensities, workloads contain user behaviors.
A user behavior is a sequence of user requests to a sys-
tem, also called clickstream [9]. Clickstreams may also
contain wait times and can be clustered based on sim-
ilarity graph [9]. As clickstreams can vary in length
and may contain repetitive subsequences. Thus, the
similarity graph can be based on these subsequences.

Alternatively, clickstreams can be converted to
graphs. There are multiple ways to use graphs to
model behaviors. One maps requests to nodes and
transitions to edges. Another maps nodes to URLs
and requests to edges to. Both can store parameter
data in attributes (cf. [17]). These graphs can then
be clustered to identify typical behaviors [16].

While, clickstream are able to retain most of the
input information, they grow quickly, making com-
parisons of behaviors more complicated. In contrast
graph-based representations are more concise, but lose
information on the exact sequence of events.

4 Graph-based Clustering

Previous attempts to identify similar behaviors
through clustering were based on the WESSBAS ap-
proach [16], just altering the clustering algorithm,
with unsatisfactory results [10, 12, 14, 15]. Thus, we
took a step back and searched for better suited ap-
proaches and found them in graph clustering.

For our graph-based approach, we chose a graph
where nodes and edges represent pages and requests,
respectively. Thus, the edges contain request infor-
mation. In case an edge is followed multiple times, it
contains a sequence of request information.

In general the process is as depicted in Fig. 1.
Based on Kieker logs, we generate graphs for each
found user behavior (currently based on sessions).
These models are stored in an M-Tree utilizing the
Graph Edit Distance (GED) metric. Subsequently,
we use OPTICS to generate a reachability-plot and
extract, based on the plot, clusters.

Graph Edit Distance is a metric to compute the
distance between graphs [1]. This metric compares
two graphs and counts the number of edit operations
to convert one graph into the other.

M-Tree is a balanced tree that stores objects based
on a distance function [2]. The advantage of M-Trees
are, they do not need an absolute metric and can use
a distance function d, like GED. The distance func-
tion must adhere the symmetry, positivity and trian-
gle inequality, i.e., d(A,B) = d(B,A), d(A,B) > 0
when A 6= B and D(A,B) = 0 when A = B, and
d(A,B) ≤ d(A,C)+d(C,B), respectively. Due to size
constrains, a detailed description of the M-Trees can
be found in [2, 17]. Essentially, the M-Tree provides
fast access to objects based on the distance function.

OPTICS is a density-based algorithm to ana-
lyze cluster structures in data sets and generates a
reachability-plot [3]. It is based on DBScan and inher-
its from it two configuration parameters: min. num-
ber of neighbors to be a dense area, and a maximum
search radius for neighbors (ε). OPTICS calculates
for each object the minimal ε for it to be in a cluster.

The reachability-plot in Fig. 2 depicts the ε values
for all objects ordered by their reachability-distance
with respect to all previously visited objects. Fig. 2
depicts various valleys indicating low ε values and,
therefore, clusters. To extract clusters these valleys
must be identified. The simplest way is to use a fixed
ε value where a cluster begins/ends when the graph
goes below/above the threshold. However, this may
not successfully identify all clusters, as for example
the separation between the two behaviors Single Cat
and Single Reptile may not be detected correctly.

5 Evaluation
We evaluated our graph-based approach based on two
monitoring datasets (a) derived from the JPetStore
experiment suite [13] with a set of predefined user be-
haviors [11] from our previous cluster algorithm tests

[10, 12, 14, 15], and (b) collected during seminars
(Software Praktikum) where students used the ticket
management system Jira to coordinate their develop-
ment efforts [18, 19, 20, 21]. The general setup for
the evaluation is as follows: We replayed monitoring
events from Kieker logs. These were processed as ex-
plained above and used to generate clusters.

JPetStore Scenario We used predefined expected
user behaviors which were used to create two sets of
workload drivers: (a) a fixed user behavior and (b)
randomized behaviors where, for example, the number
of selected items change or the number of repetitions
of a specific task. Based on these workloads and the
JPetStore the Kieker logs were generated. These logs
were both fed to our setup in separate experiment.
Each time we compared the behaviors identified by
the clustering with the predefined expected behavior.
For the fixed user behavior, all seven behaviors where
correctly detected and, beside some generated noise,
each user was correctly assigned to the corresponding
cluster which is an improvement over our previous ap-
proaches that were unable to identify them correctly.

In the randomized setup, we could also detect all
clusters correctly. However, due to the variations
some behaviors where not placed in a corresponding
cluster. This is mainly to the current cluster detec-
tion method is sensitive to cluster densities and cause
suboptimal cluster detection [17].

Jira Scenario Is a setup with real world users op-
erating a real application to perform their work. We
fed the complete Kieker log of a seminar (four weeks
of user interactions) into our cluster detection soft-
ware. The software identified a few behavior clusters.
However, the associated user behaviors were unusual
large. After investigating the behavior graphs, it be-
came clear that users usually logged in once a day
– keeping their session and perform multiple tasks.
Thus, sessions are not a viable method to identify the
beginning and end of an activity.

We tested timeouts as a potential approach. How-
ever, they do not work sufficiently. For example, a
user creates a new ticket in Jira and starts adding a
bug or features description, but before finally com-
mitting the ticket, there is a delay, e.g., a group dis-
cussion. This can create lengthly breaks between user
requests while we are still within a typical behavior.
Thus, timeouts are not suitable to split up sessions.

6 Conclusion

To generate user behavior models which are (a) a close
representation of real users, (b) a good classification
of the variety of behaviors, and (c) still usable to gen-
erate real workloads as well as models for workload
forecasting, is still an open issue. However, based on
our graph-based clustering approach with OPTICS,
we are able to identify clusters in data from our exam-
ple shop system even when user behavior is random-

Generate
Behavior

Model

Generate
M-Tree

Optics
Algorithm

Extract
Clusters

Graph Edit Distance

C1

 B ehavior Model M-Tree OPTICS Plot ClusterLog Files

Data Flow

Using an Interface

Providing an Interface

Figure 1: Conceptual representation of the workflow to generate user behavior clusters [17, p. 16]

Account
Manager

Cat
 Lover

Single
Reptile

Single
Cat

Fish
 Lover

New
Customer

Browsing
User

reachability-
distance

MinPts=10 cluster-ordering of the objects

Figure 2: Reachability-plot for the randomized user
behavior scenario (cf. Section 5, [17, p. 31])

ized to some extend. These are promising results.
Still we encountered new challenges in the detec-

tion of user behaviors, i.e., to identify the beginning
and end of a behavior pattern. Currently, we look-
ing examining approaches used to identify subgraphs
in graph based on cluster detection in the graph, and
an approach which defines certain action as end of a
typical user behavior. Furthermore, there are other
distance metrics which could be applied, and other
approaches to consider request parameter values.

References

[1] A. Sanfeliu and K. Fu. “A distance measure be-
tween attributed relational graphs for pattern
recognition”. In: IEEE Transactions on Sys-
tems, Man, and Cybernetics SMC-13.3 (May
1983), pp. 353–362.

[2] P. Ciaccia, M. Patella, and P. Zezula. “M-
tree: An Efficient Access Method for Similarity
Search in Metric Spaces”. In: Proc. of the 23rd
International Conference on Very Large Data
Bases. 1997, pp. 426–435.

[3] M. Ankerst et al. “OPTICS: ordering points to
identify the clustering structure”. In: ACM Sig-
mod record. Vol. 28. 2. ACM. 1999, pp. 49–60.

[4] S. Becker, H. Koziolek, and R. Reussner. “The
Palladio component model for model-driven
performance prediction”. In: Journal of Systems
and Software 82.1 (2009), pp. 3–22.

[5] I. Assent. “Clustering high dimensional data”.
In: Wiley Interdis. Reviews: Data Mining and
Knowledge Discovery 2.4 (2012), pp. 340–350.

[6] N. R. Herbst et al. “Self-adaptive workload
classification and forecasting for proactive re-
source provisioning”. In: Concurrency and Com-
putation: Practice and Experience 26.12 (2014),
pp. 2053–2078.

[7] J. v. Kistowski, N. R. Herbst, and S. Kounev.
“Modeling Variations in Load Intensity over
Time”. In: Proc. of the 3rd International WS
on Large Scale Testing. ACM, 2014, pp. 1–4.

[8] R. Heinrich et al. “Architectural Run-Time
Models for Operator-in-the-Loop Adaptation of
Cloud Applications”. In: MESOCA. IEEE Com-
puter Society, Sept. 2015, pp. 36–40.

[9] G. Wang et al. “Unsupervised Clickstream Clus-
tering for User Behavior Analysis”. In: ACM,
2016, pp. 225–236.

[10] C. Dornieden. “Knowledge-Driven User Behav-
ior Model Extraction for iObserve”. Masterar-
beit. Kiel University, June 2017.

[11] R. Jung and M. Adolf. JPetStore Workload
Driver. https : / / github . com / research -

iobserve/selenium-workloads. 2017.

[12] R. Jung, M. Adolf, and C. Dornieden. “Towards
Extracting Realistic User Behavior Models”. In:
STT 37.3 (Nov. 2017), pp. 11–13.

[13] R. Jung. JPetStore Experiment Suite. https:

//doi.org/10.5281/zenodo.1292788. 2018.

[14] J. Kuckei. “Comparison Of User Behaviour
Classification Methods”. Bachelorarbeit. Kiel
University, März 2018.

[15] M. Lorenzen. “Classification of User Behavior
through Connectivity-Based Clustering”. Bach-
elorarbeit. Kiel University, Apr. 2018.

[16] C. Vögele et al. “WESSBAS: extraction of
probabilistic workload specifications for load
testing and performance prediction—a model-
driven approach for session-based application
systems”. In: SoSyM (May 2018), pp. 443–477.

[17] L. Jürgensen. “Clustering and Analysis of User
Behaviors utilizing a Graph Edit Distance Met-
ric”. Bachelorarbeit. Kiel University, Nov. 2019.

[18] H. Schnoor and W. Hasselbring. Jira Monitor-
ing Data February 2017. Zenodo, Feb. 2020.

[19] H. Schnoor and W. Hasselbring. Jira Monitor-
ing Data February 2018. Zenodo, Feb. 2020.

[20] H. Schnoor and W. Hasselbring. Jira Monitor-
ing Data September 2017. Zenodo, Feb. 2020.

[21] H. Schnoor and W. Hasselbring. Jira Monitor-
ing Data September 2018. Zenodo, Feb. 2020.

https://github.com/research-iobserve/selenium-workloads
https://github.com/research-iobserve/selenium-workloads
https://doi.org/10.5281/zenodo.1292788
https://doi.org/10.5281/zenodo.1292788

	Introduction
	Workload Models
	Behavior Model Concepts
	Graph-based Clustering
	Evaluation
	Conclusion

